首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
水稻粒长主效QTL的分子遗传效应分析   总被引:1,自引:1,他引:0  
为了探索水稻粒长遗传机制,利用小穗小粒型水稻Milyang 46和大穗大粒型FJCD构建的含130个家系的重组自交群体及其包含119个分子标记的连锁图谱,分别在福建武夷山和莆田对水稻粒长进行数量性状基因位点(Quantitative trait loci,QTL)定位及其环境互作分析。结果共检测到16个控制粒长的加性QTL,包括在武夷山被检测到的7个QTL和在莆田检测到的9个QTL。它们分布在第1、2、4、5、6、7、10、11、12号染色体上,其中有2个QTL在2个环境下被重复检出。qGL-4-6在武夷山和莆田的表型变异贡献率分别为5.69%、3.58%,qGL-10-1在武夷山和莆田的表型变异贡献率分别为15.82%、8.06%。16个加性QTL中,qGL-5-3、qGL-10-1与环境存在显著互作,而互作效应对表型变异的贡献率为0。  相似文献   

2.
不同环境下水稻灌浆期净光合速率的动态遗传研究   总被引:1,自引:1,他引:0  
利用小穗小粒型水稻Milyang 46和大穗大粒型FJCD建立的一个包含130个家系F10的重组自交群体及其分子标记连锁图,测定福建省武夷山和莆田环境下灌浆期五个阶段的净光合速率,并进行了QTL动态定位及环境互作研究。QTL定位分析共检测到22个加性QTL,位于1、2、4、7、9、10、11号染色体上,对表型变异贡献率0.34%~22.71%。环境互作分析,共检测到灌浆期第一、二、四阶段的7个GE互作位点,分布在水稻2、4、9、11号染色体上。其中,灌浆期第一阶段的qNPR-2-10,第四阶段的qNPR-2-2、qNPR-4-1等3个QTL与环境的互作对表型变异贡献率达到10%以上,表明净光合速率受到较大的环境影响。此研究从一定程度上揭示了净光合速率的遗传机制,为水稻高光效育种提供了依据。  相似文献   

3.
控制水稻株高的QTL定位及环境互作分析   总被引:4,自引:2,他引:2  
为水稻的基因水平研究提供了重要的平台,利用由小穗小粒型品种‘密阳46’和大穗大粒型品种FJCD建立的一个包含130个家系F10的重组自交系群体,分别在武夷山和莆田环境下测定其株高,进行QTL定位及环境互作分析。武夷山环境下检测到2个加性QTL,位于1、2号染色体上,其中主效qPH-2-5解释了26.2%的表型变异;莆田环境下检测到4个加性QTL,分别位于2、2、2、6号染色体上,共解释了20.61%的表型变异。经过GE互作分析,2个背景QTL存在显著的加性×环境互作效应,共解释了17.36%的表型变异。此研究从一定程度上揭示了株高的数量遗传规律,同时为株高分子育种提供理论依据。  相似文献   

4.
水稻重组自交群体灌浆速率的遗传分析   总被引:2,自引:1,他引:1  
为了解籽粒灌浆和籽粒产量相关性状的遗传基础,为改良籽粒灌浆特性提供依据,以小穗小粒型水稻Milyang 46和大穗大粒型FJCD建立的包含130个家系的F10重组自交系为研究材料,分析福建省武夷山和莆田环境下水稻籽粒灌浆速率,并结合已构建的遗传图谱进行QTL动态定位及环境互作研究。QTL定位分析共检测到10个加性QTL,位于1、2、5、6、7号染色体上,对表型变异贡献率0.92%~24.41%。同时,qGR-1-4、qGR-2-1、qGR-5-9及qGR-6-7均存在显著的环境互作效应,体现了一因多效。qGR-6-7和qGR-6-8加性均可解释表型变异24.41%。另外,qGR-6-7的环境互作效应可解释表型变异贡献率9.33%。  相似文献   

5.
水稻抽穗期基因定位及其环境互作研究   总被引:3,自引:2,他引:1  
为构建SSR分子标记技术构建其遗传图谱,利用由小穗小粒型品种‘密阳46’和大穗大粒型品种FJCD建立的一个包含130个家系F10的重组自交系群体,测定武夷山和莆田环境下水稻群体的抽穗期,并进行了QTL的定位及环境互作研究。结果表明,在武夷山环境下仅检测到一个与抽穗期相关的加性QTL,位于6号染色体上,解释了25.63%;1个位点存在显著的加性×环境互作效应,而GE互作效应对表型变异贡献几乎为0,表明控制水稻抽穗期基因的表达有显著的环境特异性。  相似文献   

6.
以掖478×丹340的500个F2单株为作图群体,利用混合线性模型的复合区间作图法对397个F2∶3家系在5个生态环境下进行穗长的QTL定位分析。共检测到16个穗长QTL,单个QTL所解释的表型变异在0.15%~6.24%,累计贡献率为47.8%。在16个QTL中有10个与环境发生互作,占62.5%,贡献率在0.48%~3.78%之间。上位性互作检测到4对QTL,未检测到上位性QTL与环境互作。表明穗长受微效多基因的控制,易与环境发生互作,上位性互作在其遗传中起一定作用。  相似文献   

7.
利用高密度SNP 遗传图谱定位小麦穗部性状基因   总被引:4,自引:2,他引:2  
小麦穗部性状之间相关性密切, 其中穗粒数和千粒重是重要的产量构成要素, 挖掘与穗部性状相关联的基因位点对分子标记辅助育种及解释基因效应具有重要意义。本研究以RIL群体(山农01-35×藁城9411) 173个F8:9株系为材料, 利用90 k小麦SNP基因芯片、DArT芯片技术及传统的分子标记技术构建的高密度遗传图谱, 在5个环境下进行穗部相关性状QTL定位。检测到位于1B、4B、5B、6A染色体上7个控制千粒重的加性QTL, 解释表型变异率6.00%~36.30%, 加性效应均来自大粒母本山农01-35; 检测到8个控制穗长的加性QTL, 解释表型变异率14.34%~25.44%; 3个控制穗粒数的加性QTL; 5个控制可育小穗数的加性QTL; 3个控制不育小穗数的加性QTL, 贡献率为8.70%~37.70%; 4个控制总小穗数的加性QTL; 6个控制小穗密度的加性QTL。通过基因型与环境互作分析, 检测到32个加性QTL, 解释表型变异率0.05%~1.05%。在4B染色体区段EX_C101685–RAC875_C27536检测到控制粒重、穗长、穗粒数、可育小穗数、不育小穗数、总小穗数的一因多效QTL,其贡献率为5.40%~37.70%, 该位点在多个环境中被检测到, 是稳定主效QTL。在6A染色体wPt-0959-TaGw2-CAPS区间上检测到控制粒重、总小穗数的QTL。研究结果为穗部性状的分子标记开发、基因精细定位和功能基因克隆奠定了基础。  相似文献   

8.
以掖478×丹340的500个F2单株为作图群体,利用混合线性模型的复合区间作图法对397个F2: 3家系在5个生态环境下进行穗长的QTL定位分析.共检测到16个穗长QTL,单个QTL所解释的表型变异在0.15%~6.24%,累计贡献率为47.8%.在16个QTL中有10个与环境发生互作,占62.5%,贡献率在0.48%~3.78%之间.上位性互作检测到4对QTL,未检测到上位性QTL与环境互作.表明穗长受微效多基因的控制,易与环境发生互作,上位性互作在其遗传中起一定作用.  相似文献   

9.
[目的]为从分子水平上解析玉米穗长、穗粗和籽粒深度的遗传基础,[方法]以豫82×豫87-1衍生的一套重组近交系(RIL)群体为材料,通过多点的表型鉴定,采用SNP标记构建的遗传连锁图谱进行QTL定位及上位性效应分析,[结果]结果表明,3个穗部性状共检测到的18个QTL,这些QTL与环境的互作均未达到显著水平,说明所检测到的控制穗长、穗粗和粒深的QTL在三个环境间的遗传是稳定的。在这些QTL中,位于第1染色体调控穗长的qEL1-1和第2染色体调控粒深的qKD2-1、qKD2-2,分别解释表型变异的6.11%和10.22%、8.88%,说明这三个主效QTL是调控穗部性状的重要区域。上位性效应分析结果表明,共检测到三对位点间互作,互作效应为1.23%~6.54%,其中有一对位点属于显著QTL位点对互作。[结论]由此可见,上位性互作效应在穗部性状的遗传中占有一定的比例,但作用比重相对较小。这些研究结果为进一步图位克隆相关关键基因及分子标记辅助育种提供了重要的参考价值。  相似文献   

10.
为从分子水平上解析玉米穗长、穗粗和籽粒深度的遗传基础,以豫82×豫87-1衍生的一套重组近交系(RIL)群体为材料,通过多点的表型鉴定,采用SNP标记构建的遗传连锁图谱进行QTL定位及上位性效应分析。结果表明,在穗部3个性状中共检测到的18个相关QTL,并且与环境的互作均不显著。在这些QTL中,位于第1染色体调控穗长的q EL1-1和第2染色体调控粒深的q KD2-1、q KD2-2,分别解释表型变异的6.21%和10.11%、8.90%。上位性效应分析结果表明,共检测到3对位点间互作,互作效应为1.23%~6.49%,其中有1对位点互作达到显著水平。本研究为进一步图位克隆相关关键基因及分子标记辅助育种提供了重要的参考价值。  相似文献   

11.
为发掘水稻穗部性状有利等位变异,构建了以籼稻保持系II-32B为遗传背景的A7444染色体片段置换系群体;利用QTL Ici Mapping 4.1软件对该群体7个穗部性状进行了QTL定位。结果 2年共检测到26个QTL。2年均检测到的13个QTL中,控制一次枝梗数的4个QTL位于第1、第6、第8和第9染色体,平均贡献率分别为15.16%、13.10%、29.74%和11.21%,平均加性效应分别为-1.40、1.01、1.11和0.77。控制二次枝梗数的2个QTL位于第6和第8染色体,平均贡献率分别为10.97%和21.39%,平均加性效应分别为5.45和6.36。控制每穗总粒数的3个QTL位于第2、第6和第8染色体,平均贡献率分别为8.65%、12.52%和31.22%,平均加性效应分别为-18.61、22.23和31.87。控制每穗实粒数的1个QTL位于第8染色体,平均贡献率为28.06%,平均加性效应30.85。控制千粒重的2个QTL位于第2染色体,平均贡献率分别为44.65%和17.51%,平均加性效应分别为2.88和-2.51。控制粒宽的1个QTL位于第10染色体,平均贡献率为21.96%,平均加性效应为0.11。第2、第6和第8染色体分别存在同时控制二次枝梗数、每穗总粒数和每穗实粒数QTL的区段。qSBN6和qSBN8所在区间与Hd1和DTH8的相同,但分别存在16处和1处碱基差异,推测为Hd1和DTH8的不同等位基因。qSBN2为新检测到的控制二次枝梗数位点。研究结果为实施分子标记聚合育种提供了有用信息。  相似文献   

12.
Additive effects (A) and additive‐by‐environment interactions (A×E) for five rice yield components were analysed using 20 SSSLs under mixed linear model methodology. Thirty‐one QTLs were detected. Different yield components have different QTL‐by‐environment (Q×E) interaction patterns. No A×E interaction effects were detected for the four QTLs for panicle number (PN). Four QTLs detected for spikelets per panicle (SPP) had A×E interactions. Five of seven QTLs detected for grains per panicle (GPP), two of 10 QTLs detected for 1000‐grains weight (GWT) and three of six QTLs detected for seed set ratio (SSR) showed significant A×E interaction. Most of these QTLs were distributed in clusters across the genome. The complexity of linkage and pleiotropy of these QTLs plus environmental effect may result in the diversity of the yield phenotype in the SSSLs. Only S19 exhibited a significant increase in yield with a predicted gain by 281.58 kg ha?1. The results may be useful to design a better breeding strategy that takes advantage of QTL‐by‐environment interaction effects in each of the SSSLs.  相似文献   

13.
水稻苗期耐Cd胁迫的QTL定位分析   总被引:2,自引:0,他引:2  
[目的]进行水稻苗期耐Cd胁迫的QTL初步定位。[方法](1)以Lemont(美国)和Dular(印度)杂交建立的重组自交系(RILs)群体,包括123个家系和亲本在内,用含有0.2mg/L镉的水培液进行处理,以不加镉培养的水培液作为对照,考察了叶绿素含量、根长、株高、叶长等4个性状,并转换成抗性指数,用于评价水稻对Cd污染的抗性指标。(2)在已构建的以109个引物为基础的遗传图谱上进行复合区间定位。[结果](1)共检测到9个加性QTLs,涉及1,2,3,11等4条染色体,其中,以叶绿素抗性指数为指标,检测到3个与耐Cd有关的QTLs 分别位于第2,3,11染色体上,解释了14%,9%,9%的表型变异;(2)以根长抗性指数为评价指标,只定到1个位于第1染色体上控制耐Cd的QTLs,解释了9%的表型变异; (3)用株高抗性指数进行定位,共有3个与耐Cd相关的QTLs,位于1,1,11染色体上,分别解释了10%,27%,10%的表型变异;(4)而以叶长抗性指数进行水稻秧苗耐Cd性表现的QTL定位,结果发现也有2个QTLs与其耐Cd 反应有关,它们分别位于1,11染色体上,解释了21%,12%的表型变异。分析表明,在采用不同评价指标所检测到的9个与耐Cd相关的QTLs中,有7个集中于第1和第11染色体上,其中第1染色体上有4个,第11染色体上有3个。(结论)以株高和叶绿素抗性指数为评价指标,检测到的QTLs最多,根长抗性指数为评价指标的最少。研究还发现在第1和第11染色体上的相同区间内同时检测到以不同抗性指数为评价指标的多个与耐Cd相关的QTLs,推测它们可能是功能相同的几个紧密连锁的非等位基因,也可能就是同一等位基因的不同表现形式,从而也说明了该评价指标用于基因定位的准确性和可行性。  相似文献   

14.
基于CSSSLs的水稻穗长QTL的定位   总被引:2,自引:0,他引:2  
穗长是影响水稻产量的重要因子之一,是典型的数量性状,遗传基础复杂,且易受环境等因素的影响。染色体单片段代换系(Chromosome single segment substitution lines,CSSSLs)减少了个体间遗传背景的干扰,是鉴定复杂性状QTL的新型遗传材料。本研究以广陆矮4号为受体、日本晴为供体的85个染色体单片段代换系群体为试验材料,通过单因素方差分析和Dunnett’s多重比较测验单片段代换系与受体亲本广陆矮4号之间穗长的差异,对代换片段上穗长QTL进行了鉴定。以P<0.001为阈值,共检测到22个穗长QTLs,分布于除第10染色体以外的11条染色体上,其加性效应值的变化范围为-2.63~3.87,加性效应百分率变化范围为-11.47%~16.88%。这些QTLs的鉴定,为进一步克隆穗长QTL以及水稻穗长的分子改良提供了重要的依据。  相似文献   

15.
水稻产量事关粮食安全,对水稻高产基因的进一步挖掘意义重大。本研究采用花药培养技术,构建了包含101个株系的中嘉早17×D50的加倍单倍体群体(DH群体)。考察海南陵水、浙江杭州高产田块和杭州山区低产田块3种种植环境下DH群体各株系、亲本中嘉早17和D50的有效穗数、每穗粒数、结实率以及千粒重等产量相关性状,同时构建DH群体的遗传连锁图谱。QTL定位分析表明,3种种植环境下共检测到74个具有显著加性效应的QTL,其贡献率变幅为3.7%~43.2%,分布于水稻12条染色体。其中,qPH1-1和qFLL12在3种种植环境下均被检测到,其贡献率分别为8.9%、24.2%、43.2%和16.6%、17.9%、18.9%。此外,qPH3、qFLL10-2、qFLW11-1、qPL11、qGNP11、qSSR3以及qTGW5-17个QTL在其中2种种植环境下被同时检测到,其贡献率变幅为7.4%~42.2%。QTL×环境互作分析表明,仅qPH1-1、qFLW2、qEPP1和qTGW5-14个QTL存在显著的加性×环境互作效应。进一步对qTGW5-1定位区间所包含的GW5测序分析表明,高产株系和低产株系的GW5等位基因分别来自亲本中嘉早17和D50,这与检测到的qTGW5-1的加性效应来自亲本中嘉早17相符。本研究为今后水稻产量相关基因的进一步挖掘以及借助分子聚合育种培育超高产品种提供了理论依据和技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号