首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以掖478×丹340的500个F2单株为作图群体,利用混合线性模型的复合区间作图法对397个F2: 3家系在5个生态环境下进行穗长的QTL定位分析.共检测到16个穗长QTL,单个QTL所解释的表型变异在0.15%~6.24%,累计贡献率为47.8%.在16个QTL中有10个与环境发生互作,占62.5%,贡献率在0.48%~3.78%之间.上位性互作检测到4对QTL,未检测到上位性QTL与环境互作.表明穗长受微效多基因的控制,易与环境发生互作,上位性互作在其遗传中起一定作用.  相似文献   

2.
水稻粒形性状的上位性和QE互作效应分析   总被引:4,自引:0,他引:4  
本研究利用基于明恢86×佳辐占水稻重组自交系(recombinant inbred line,RIL)构建的SSR遗传图谱,总标记数为131.联合两季的稻米粒长(GL)、粒宽(GW)、长宽比(L/W)表型数据,应用混合线性模型方法进行QTL定位,并作加性效应、上位效应以及加性QTL、上位性QTL与环境(QTL-by-environment,QE)的互作效应分析.检测到粒长、粒宽和长宽比的加性效应QTLs分别为6个、4个和4个,贡献率分别为23.67%、21.41%和25.78%;检测到8对粒长的上位性QTLs,5对粒宽的上位性QTLs,2对长宽比的上位性QTLs,贡献率分别为16.75%、22.36%和7.55%;环境互作检测中,发现共有9个加性QTLs和7对上位性QTLs与环境发生了互作.结果表明,上位效应在粒形性状的遗传与加性效应一样起了重要作用,环境互作效应对粒形性状有一定的影响.  相似文献   

3.
[目的]为从分子水平上解析玉米穗长、穗粗和籽粒深度的遗传基础,[方法]以豫82×豫87-1衍生的一套重组近交系(RIL)群体为材料,通过多点的表型鉴定,采用SNP标记构建的遗传连锁图谱进行QTL定位及上位性效应分析,[结果]结果表明,3个穗部性状共检测到的18个QTL,这些QTL与环境的互作均未达到显著水平,说明所检测到的控制穗长、穗粗和粒深的QTL在三个环境间的遗传是稳定的。在这些QTL中,位于第1染色体调控穗长的qEL1-1和第2染色体调控粒深的qKD2-1、qKD2-2,分别解释表型变异的6.11%和10.22%、8.88%,说明这三个主效QTL是调控穗部性状的重要区域。上位性效应分析结果表明,共检测到三对位点间互作,互作效应为1.23%~6.54%,其中有一对位点属于显著QTL位点对互作。[结论]由此可见,上位性互作效应在穗部性状的遗传中占有一定的比例,但作用比重相对较小。这些研究结果为进一步图位克隆相关关键基因及分子标记辅助育种提供了重要的参考价值。  相似文献   

4.
为了探知水稻穗长的动态遗传机制,利用由穗型差异大的水稻品种Milyang 46和FJCD建立的包含130个株系的F10重组自交系,测定福建武夷山和莆田环境下穗长灌浆期的动态变化值,并进行了QTL定位及其互作研究。结果检测到35个加性QTL,16个加性×环境互作QTL,1对加加上位性效应。QTL定位分析检测到的35个加性QTL,位于1、2、4、5、7、8、9、10、11号染色体上,对表型变异贡献率0.5%~16.52%。环境互作分析检测到的16个GE互作位点,分布在水稻1、2、3、4、5、7、8、9、11号染色体上,大部分为微效QTL。武夷山环境中,还检出1对加加上位性QTL,对表型变异贡献率达到33.14%。此研究一定程度上揭示了穗长遗传机制,为水稻育种提供了依据。  相似文献   

5.
大豆油分含量相关的QTL间的上位效应和QE互作效应   总被引:6,自引:1,他引:5  
利用Charleston × 东农594重组自交系构建的SSR遗传图谱, 及混合线性模型方法对2002年到2006年连续5年的大豆油分含量进行QTL定位, 并作加性效应, 加性×加性上位互作效应及环境互作效应分析。共检测到11个控制油分含量的QTL, 分别位于第A1、A2、B1、C2、D1a、D1b、F、H和O连锁群上, 其中2个表现为遗传正效应, 9个表现为遗传负效应, 另检测到15对影响油分含量的加性×加性上位互作效应的QTL, 解释该性状总变异的17.84%。发现9个QTL与环境存在互作, 贡献率达到5.76%。  相似文献   

6.
大豆蛋白质含量相关QTL间的上位效应和QE互作效应   总被引:11,自引:1,他引:10  
利用Charleston×东农594重组自交系构建的SSR遗传图谱及混合线性模型方法对2002—2006连续5年的大豆蛋白质含量进行QTL定位,并作加性效应,加性×加性上位互作效应及环境互作效应分析。共检测到10个控制蛋白质含量的QTL,分别位于第B2、C2、D1a、E和N连锁群,其中1个表现为遗传正效应,9个表现为遗传负效应,另检测到15对影响蛋白质含量的加性×加性上位互作效应的QTL,解释该性状总变异的13.75%。环境互作检测中,发现9个QTL与环境存在互作,贡献率达到4.47%。  相似文献   

7.
深入剖析干旱胁迫条件下玉米穗部性状的遗传机制可为玉米抗旱高产分子育种提供参考依据。以大穗型旱敏感自交系TS141为共同亲本,分别与小穗型强抗旱自交系廊黄和昌7-2杂交,构建了含有202个(LTPOP)和218个(CTPOP)家系的F2:3群体,在8种水旱环境下进行单穗重、穗轴重、穗粒重、百粒重、出籽率及穗长等6个穗部性状的表型鉴定,并采用复合区间作图法(CIM)和基于混合线性模型的复合区间作图法(MCIM)对其进行单环境和多环境联合数量性状位点(QTL)分析。结果表明,采用CIM法,单环境下在2套F2:3群体间检测到62个穗部性状QTL,其中干旱胁迫环境下检测到38个QTL,进一步在2套F2:3群体多个干旱胁迫环境下检测到10个稳定表达的QTL (sQTL),分别位于Bin 1.01–1.03、Bin 1.03–1.04、Bin 1.05、Bin 1.07、Bin 1.07–1.08、Bin 2.04、Bin 4.08、Bin 5.06–5.07、Bin6.05和Bin 9.04–9.06。采用MCIM法,联合分析定位到54个穗部性状联合QTL,其中24个表现显著的QTL与环境互作(QTL×E), 17对参与了显著的加性与加性/显性(AA/AD)上位性互作,其表型贡献率较低。这些研究结果可为系统地剖析玉米穗部性状的分子遗传机制提供理论依据;且这2套F2:3群体多个环境下检测到的sQTL可作为穗部性状改良的重要候选染色体区段,用于图位克隆或抗旱高产分子育种,但要注重环境及上位性互作效应的影响。  相似文献   

8.
多种环境下大豆单株粒重QTL的定位与互作分析   总被引:1,自引:0,他引:1  
定位大豆单株粒重QTL、分析QTL间的上位效应及QTL与环境互作效应, 有利于大豆单株粒重遗传机理的深入研究。利用147个F2:14~F2:18 RIL群体, 5年2点多环境下以CIM和MIM方法同时定位大豆单株粒重QTL, 检测到17个控制单株粒重的QTL, 分别位于D1a、B1、B2、C2、F、G和A1连锁群上, 贡献率为6.0%~47.9%;用2种方法同时检测到3个QTL, 即qSWPP-DIa-3、qSWPP-F-1和qSWPP-D1a-5, 贡献率为6.3%~38.3%;2年以上同时检测到4个QTL, 即qSWPP-DIa-1、qSWPP-DIa-2、qSWPP-B1-1和qSWPP-G-1, 贡献率为8.1%~47.9%;利用QTLMapper分析QE互作效应和QTL间上位效应, 7种环境下的数据联合分析得到1个QE互作QTL和4对上位效应QTL, 贡献率和加性效应都较小。在分子标记辅助育种中应该同时考虑主效QTL及各微效QTL之间的互作。  相似文献   

9.
为从分子水平上解析玉米穗长、穗粗和籽粒深度的遗传基础,以豫82×豫87-1衍生的一套重组近交系(RIL)群体为材料,通过多点的表型鉴定,采用SNP标记构建的遗传连锁图谱进行QTL定位及上位性效应分析。结果表明,在穗部3个性状中共检测到的18个相关QTL,并且与环境的互作均不显著。在这些QTL中,位于第1染色体调控穗长的q EL1-1和第2染色体调控粒深的q KD2-1、q KD2-2,分别解释表型变异的6.21%和10.11%、8.90%。上位性效应分析结果表明,共检测到3对位点间互作,互作效应为1.23%~6.49%,其中有1对位点互作达到显著水平。本研究为进一步图位克隆相关关键基因及分子标记辅助育种提供了重要的参考价值。  相似文献   

10.
水稻穗部性状与产量直接相关,定位克隆穗部性状相关QTL对探究穗部性状分子机制及分子植物育种具有重要意义。以粳稻TY319和籼稻保持系8B的F3群体为作图群体,对穗长、一次枝梗数、二次枝梗数、每穗总粒数和着粒密度进QTL定位与上位性分析。采用完备区间作图,共检测出14个穗部相关性状QTL,分别位于第1、第2、第7、第8、第9、第10染色体,LOD值介于2.56~4.96,表型变异贡献率介于6.90%~31.99%。控制二次枝梗数的qSB-1、及控制着粒密度的qSD-1和qSD-2未见报道,可能是新的QTL,上位性分析检测到69个互作。  相似文献   

11.
水稻粒长主效QTL的分子遗传效应分析   总被引:1,自引:1,他引:0  
为了探索水稻粒长遗传机制,利用小穗小粒型水稻Milyang 46和大穗大粒型FJCD构建的含130个家系的重组自交群体及其包含119个分子标记的连锁图谱,分别在福建武夷山和莆田对水稻粒长进行数量性状基因位点(Quantitative trait loci,QTL)定位及其环境互作分析。结果共检测到16个控制粒长的加性QTL,包括在武夷山被检测到的7个QTL和在莆田检测到的9个QTL。它们分布在第1、2、4、5、6、7、10、11、12号染色体上,其中有2个QTL在2个环境下被重复检出。qGL-4-6在武夷山和莆田的表型变异贡献率分别为5.69%、3.58%,qGL-10-1在武夷山和莆田的表型变异贡献率分别为15.82%、8.06%。16个加性QTL中,qGL-5-3、qGL-10-1与环境存在显著互作,而互作效应对表型变异的贡献率为0。  相似文献   

12.
大豆籽粒硬实加性和上位性QTL定位   总被引:2,自引:0,他引:2  
硬实是植物种子的普遍特性, 是影响大豆种子发芽率、生存能力及储存期的重要数量性状, 同时影响着大豆的加工品质。本实验通过对大豆籽粒硬实性状的加性和上位性互作QTL (quantitative trait locus)分析, 明确控制大豆籽粒硬实的重要位点及效应, 旨在为进一步解析硬实性状复杂的遗传机制提供理论依据。以冀豆12和地方品种黑豆(ZDD03651)杂交构建的包含186个家系的F6:8和F6:9重组自交系群体为材料, 采用WinQTL Cartographer V. 2.5的复合区间作图法(composite interval mapping, CIM)定位不同年份的籽粒硬实性状相关的加性QTL, 同时采用IciMapping 4.1软件中的完备区间作图法(inclusive composite interval mapping, ICIM)检测籽粒硬实性状的加性及上位性QTL。共检测到3个籽粒硬实性状相关的加性QTL, 分别位于第2、第6和第14染色体, 遗传贡献率范围为5.54%~12.94%。同时检测到4对上位性互作QTL, 分别位于第2、第6、第9、第12和第14染色体, 可解释的表型变异率为2.53%~3.47%。同时检测到籽粒硬实性状加性及上位性互作QTL, 且上位性互作多发生在主效QTL间或主效QTL与非主效QTL间, 表明上位性互作效应在大豆籽粒硬实性状的遗传基础中具有重要的作用。  相似文献   

13.
为了研究玉米叶型性状的QTL以及它们的上位性效应,本研究以豫82为母本、豫87-1为父本发展而成的一套重组自交系群体为材料,通过一年3点的表型鉴定,利用遍布玉米全基因组的SNP标记,对玉米叶向值、叶夹角、叶长、叶高点长和叶宽5个性状进行QTL定位及上位性效应分析。定位结果表明,5个性状共定位到24个QTL,贡献率6.89%~13.43%,所有主效QTL均与环境没有显著的互作效应。其中,q LA1-1、q LA8-1、q Lf2-1、q Lf5-1、q LOV3-1、q LL2-1、q LL4-1、q LW1-1和q LW3-1的贡献率均在10%以上,说明这些位点对叶型的影响较为重要。上位性效应分析结果表明,共检测有15对上位性互作位点表现出显著性,并且所有的互作位点对都发生在不同染色体之间;多数互作位点对,均发生在未显著性效应的位点之间;所有的上位性互作位点对间的互作效应与环境也无显著的互作效应,这表明叶型相关性状的加性效应和上位性效应,均不受地点间环境条件的影响。本研究为进一步图位克隆相关关键基因及分子标记辅助育种改良玉米株型提供了重要的参考价值。  相似文献   

14.
多环境下水稻DH群体剑叶长度的QTL分析   总被引:6,自引:1,他引:5  
曹刚强  高用明  朱军 《作物学报》2007,33(2):223-229
种植由籼稻品种和粳稻品种杂交衍生的DH群体,连续4年测定剑叶长度,运用基于混合模型的复合区间作图法,定位其QTL及上位性互作,估算遗传主效应和环境互作效应。结果表明,全部18个QTL都参与了上位性的形成,其中3个没有自身的遗传效应,但参与了3对上位性互作,这是传统方法不能发现的。另外,一个QTL可与多个QTL发生互作,这可能预示着存在更高阶互作。QTL与上位性互作可以具有不受环境影响而稳定表达的效应,以及与环境的互作效应。有些QTL与环境的互作效应可以在多环境下被检测到,但却不具有主效应,这种QTL可能易受环境因子的影响。QTL与环境的互作效应为随机效应,一个QTL或一对上位性与环境的互作效应总和理论上应等于零,否则会影响对遗传效应的估算,因此多环境下估算的遗传效应更可靠。  相似文献   

15.
水稻抽穗期上位效应和QE互作效应的分析   总被引:4,自引:0,他引:4  
抽穗期是水稻的重要农艺性状,深入了解其遗传效应对水稻育种实践具有重要现实意义。本研究利用基于明恢86×佳辐占、广陆矮×佳辐占两个重组自交系构建的SSR遗传图谱,应用混合线性模型方法对2003年晚季和2005年早季获得的两季水稻抽穗期数据进行QTL定位,并作加性效应、加性×加性上位互作效应及环境互作效应分析。两个群体共检测到10个控制抽穗期的QTL,分别位于1、2、3、6、7和10号染色体上,仅qHD10(广佳重组自交系中为qHD10-1)在两个群体中同时检测到,另检测到11对具有上位效应的互作位点,其中有5个是加性效应显著的QTL。环境互作检测中,发现明佳重组自交系的qHD10和广佳重组自交系的qHD7与环境存在显著互作,贡献率分别为0.34%和2.32%。本研究表明:两群体的抽穗期性状的遗传受环境因素影响较小,特别是明佳组合,较适合作为分子辅助育种的研究材料。  相似文献   

16.
大豆产量及主要农艺性状QTL的上位性互作和环境互作分析   总被引:2,自引:0,他引:2  
以栽培大豆晋豆23为母本,半野生大豆灰布支黑豆ZDD2315为父本杂交衍生的F2:15和F2:16的447个RIL家系为遗传群体,绘制SSR遗传图谱,采用混合线性模型方法,对2年大豆小区产量及主要农艺性状进行加性QTL、加性×加性上位互作及环境互作分析。结果检测到9个与小区产量、茎粗、有效分枝、主茎节数、株高、结荚高度相关的QTL,分别位于J_2、I、M连锁群上,其中小区产量、茎粗、株高、有效分枝和主茎节数QTL的加性效应为正值,说明增加这些性状的等位基因来源于母本晋豆23。同时,检测到7对影响小区产量、茎粗、株高和结荚高度的加性×加性上位互作效应及环境互作效应的QTL,共发现14个与环境存在互作的QTL。上位效应和QE互作效应对大豆小区产量及主要农艺性状的遗传影响较大。大豆分子标记辅助育种中,既要考虑起主要作用的QTL,又要注重上位性QTL,才有利于性状的稳定表达和遗传。  相似文献   

17.
为揭示栽培种花生含油量遗传机制,以高产抗逆品种花育36号和高油品系6-13为亲本,构建了181个重组自交系(RIL,Recombinant inbred line),以F_(2∶7)-F_(2∶8)重组自交系为试验材料,测定在3个环境下(E1、E2、E3)的籽仁含油量,进行QTL定位和上位效应分析。结果表明,群体含油量存在超亲遗传,且符合正态分布,广义遗传率为0.55。基于复合区间作图模型共检测到5个QTL,分别位于第6,8,15,17染色体,表型变异贡献率为7.39%~17.67%。在环境E1下检测到2个QTL,qOC6和qOC8.1,表型贡献率为17.67%,9.17%;在环境E2共检测到3个位点,qOC8.2、qOC15和qOC17,表型贡献率分别为8.83%,16.53%,7.39%;在环境E3共检测到1个位点qOC15,表型贡献率为17.39%。其中仅主效位点qOC15可在2个环境下被重复检测,覆盖约2.8 Mb基因组区间,增效等位基因来自6-13。基于完备区间作图法共检测到21对上位性QTL,分别位于第1,3,5,7,8,9,10,12,13,14,15,16,17,18,19,20染色体,上位性效应对互作的表型贡献率为1.24%~3.54%,上位性QTL与环境互作的表型贡献率为0~1.67%。对主效位点qOC15进行基因功能预测,共有97个功能注释基因,主要参与细胞内相关催化反应和代谢途径,其中包括4个可能参与脂质合成、代谢和转运的候选基因。本研究定位到的5个QTL和21对上位QTL,为后续花生品质改良和相关基因克隆提供理论基础。  相似文献   

18.
大豆籽粒大小与形状性状的QTL定位   总被引:2,自引:0,他引:2  
大豆籽粒大小和粒形性状不仅与产量和外观品量紧密相关,还对机械化播种有着一定的影响。本研究采用大粒栽培品种冀豆12与小粒半野生地方品种黑豆(ZDD03651)杂交衍生的包含188个重组自交系的F6:8和F6:9群体为材料,对粒长、粒宽、粒厚、长宽比、长厚比和宽厚比的遗传结构进行分析,并分别以WinQTLCart 2.5、QTLNetwork 2.1和IciMapping 4.1 3种模型对以上性状的加性效应QTL,QE互作效应及上位性互作效应进行检测。6个性状的广义遗传率介于64.01%~79.57%,遗传力较高,且除粒厚外的其他性状受环境影响显著。共定位到加性效应QTL38个,单个QTL的贡献率介于2.21%~10.71%之间,分布在12条染色体的17个标记区间内,且12个染色体区段至少与两种性状相关。两种及以上模型同时检测到的QTL有24个,3种模型均能检测到的QTL共8个,分别为qSL-17-1、qSL-18-1、qSW-6-1、qST-2-1、qST-6-1、qSLT-2-2、qSWT-2-1和qSWT-20-1。检测到7对上位性互作QTL,分别涉及粒长、粒宽、长宽比、长厚比和宽厚比,互作效应贡献率介于0.78%~6.20%之间。QE互作效应贡献率均较低,介于0.0005%~0.3900%之间。以多种模型同时检测结果准确性较高,可为分子标记辅助育种工作提供可靠理论基础。  相似文献   

19.
利用高密度SNP 遗传图谱定位小麦穗部性状基因   总被引:4,自引:2,他引:2  
小麦穗部性状之间相关性密切, 其中穗粒数和千粒重是重要的产量构成要素, 挖掘与穗部性状相关联的基因位点对分子标记辅助育种及解释基因效应具有重要意义。本研究以RIL群体(山农01-35×藁城9411) 173个F8:9株系为材料, 利用90 k小麦SNP基因芯片、DArT芯片技术及传统的分子标记技术构建的高密度遗传图谱, 在5个环境下进行穗部相关性状QTL定位。检测到位于1B、4B、5B、6A染色体上7个控制千粒重的加性QTL, 解释表型变异率6.00%~36.30%, 加性效应均来自大粒母本山农01-35; 检测到8个控制穗长的加性QTL, 解释表型变异率14.34%~25.44%; 3个控制穗粒数的加性QTL; 5个控制可育小穗数的加性QTL; 3个控制不育小穗数的加性QTL, 贡献率为8.70%~37.70%; 4个控制总小穗数的加性QTL; 6个控制小穗密度的加性QTL。通过基因型与环境互作分析, 检测到32个加性QTL, 解释表型变异率0.05%~1.05%。在4B染色体区段EX_C101685–RAC875_C27536检测到控制粒重、穗长、穗粒数、可育小穗数、不育小穗数、总小穗数的一因多效QTL,其贡献率为5.40%~37.70%, 该位点在多个环境中被检测到, 是稳定主效QTL。在6A染色体wPt-0959-TaGw2-CAPS区间上检测到控制粒重、总小穗数的QTL。研究结果为穗部性状的分子标记开发、基因精细定位和功能基因克隆奠定了基础。  相似文献   

20.
为定位水稻发芽期和芽期耐冷性的加性QTL和上位性QTL,本试验以粳稻品种空育131和东农422构建的F:代重组自交系(RIL)190个家系为作图群体,利用104个SSR标记构建遗传连锁图谱,利用完备区间作图法分别对低温发芽力和芽期耐冷性进行QTL定位并分析其加性效应和上位性效应。结果检刚到控制芽期耐冷性的1个加性QTL位于4号染色体上,贡献率为16.84%;17个控制低温发芽力的加性QTL分别位于第1,2,3,6,7,9,12染色体上,贡献率为5.64%~35.67%;控制芽期耐冷性的上位性QTL2对,累积贡献率19.3%;控制发芽期耐冷性的上位性QTL33对,各性状累计贡献率介于18.35%~91.08%,分别控制第7,10,11,15天的发芽率和平均发芽天数的表达,累积贡献率分别为87.88%,87.38%,91.08%,78.68%和18.35%。上位性在水稻发芽期和芽期耐冷性遗传中作用重大,因此,在分子标记育种中加性QTL和上位性QTL是很重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号