首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
木粉和稻壳粉是制备木塑复合材料( WPC)常用原料.WPC在使用过程中经常受到热和水分的影响,笔者对比研究了稻壳粉/HDPE和木粉/HDPE两种复合材料经历热氧老化和长时间水浸渍后性能的变化规律.结果表明:木粉/高密度聚乙烯(HDPE)复合材料的弯曲强度和弹性模量都大于稻壳粉/HDPE的;随着热氧老化或水浸渍处理时间的延长,复合材的挠曲性能下降,其中木粉/HDPE复合材的弹性模量下降最为迅速;复合材料表面明度值随着热处理时间的延长而减小,说明颜色变暗,稻壳粉与木粉填充的复合材之间差别不大.通过光学显微镜观察发现,HDPE与稻壳粉或木粉之间都有缝隙存在,为水分和氧气的进出提供了通道.  相似文献   

2.
新型木塑复合材料成型工艺的研究   总被引:8,自引:2,他引:8  
木塑复合材料是以木材或各种木质纤维素纤维材料为基体 ,通过与塑料以不同复合途径形成的一种新型材料。文章介绍了平压法木塑复合材料成型工艺 ,研究了成型过程中板坯的流动性和粘结性 ,探讨了塑料与木质碎料的混合比对木塑复合材料力学性能的影响。结果表明将塑料先加入一定量的木粉或将木质材料与混炼后的塑料混合后压制成型 ,材料可以具有良好的力学性能  相似文献   

3.
木粉和稻壳粉是制备木塑复合材料(WPC)常用原料。WPC在使用过程中经常受到热和水分的影响,笔者对比研究了稻壳粉/HDPE和木粉/HDPE两种复合材料经历热氧老化和长时间水浸渍后性能的变化规律。结果表明:木粉/高密度聚乙烯(HDPE)复合材料的弯曲强度和弹性模量都大于稻壳粉/HDPE的;随着热氧老化或水浸渍处理时间的延长,复合材的挠曲性能下降,其中木粉/HDPE复合材的弹性模量下降最为迅速;复合材料表面明度值随着热处理时间的延长而减小,说明颜色变暗,稻壳粉与木粉填充的复合材之间差别不大。通过光学显微镜观察发现,HDPE与稻壳粉或木粉之间都有缝隙存在,为水分和氧气的进出提供了通道。  相似文献   

4.
木粉加入量对木/塑复合材料性能影响的研究   总被引:18,自引:0,他引:18  
秦特夫 《木材工业》2002,16(5):17-20
研究了聚丙烯与木粉以不同比率复合而成的材料的物理力学性能和复合形态特征。结果表明:不同混合比率的聚丙烯与木粉进行复合后所得的复合材料,除冲击强度有所降低外,其它力学性能均比纯聚丙烯的有较大幅度的提高。木粉表面的酯化处理可以改善木塑界面之间的相容性和复合材料的均匀性。在木塑复合过程中木塑之间发生镶嵌现象使木塑之间产生物理结合。  相似文献   

5.
木塑复合材料的界面相容性是决定其性能的关键因素,通过添加偶联剂的方法能够改善其界面相容性,从而提高其性能。通过测定毛白杨木粉/聚丙烯复合材料的物理力学性能来研究木粉含量和偶联剂添加量对木塑复合材料物理力学性能的影响,为进一步研究木塑复合材料的界面相容性提供理论依据。研究结果表明:随着木粉含量的增加,复合材料的物理力学性能下降,并且在高木粉含量阶段影响显著;高木粉含量复合材料的性能较差,添加MAPP能显著改善其物理力学性能。  相似文献   

6.
利用木薯秸秆粉末和可降解的聚碳酸亚丙酯(PPC),采用挤出造粒、热压成型方法制备木塑复合材料,分析木薯秸秆粉末的粒径和填充量对复合材料的力学性能的影响。综合考虑复合材料的力学性能以及木薯秸秆的利用率,确定较优的木薯秸秆粉末粒径为80~140目,填充量为50%。依此条件制备的复合材料,弯曲强度达到GB/T24137-2009《木塑装饰板》的要求(≥20 MPa)。  相似文献   

7.
挤出成型是木塑复合材料(木塑)成型工艺中应用最广泛的技术之一,通过分析,明确了挤出成型技术在木塑家具制造中的应用优势;阐述了挤出成型技术对木塑家具性能的影响及其在木塑家具制造中存在的局限性。结合案例,对基于挤出成型技术的木塑复合材料在家具中的应用现状进行梳理,提出了挤出成型木塑家具设计新思路,并进行设计分析和实证研究。结果表明:通过对木塑家具造型和结构进行设计,可充分发挥挤出成型技术优势,并克服其局限性。该研究对木塑家具的设计和制造具有参考意义。  相似文献   

8.
对以铝酸酯为偶联剂对木粉进行表面改性处理后制备的木粉/聚丙烯复合材料的力学性能和形态学特征进行了研究。结果表明:铝酸酯偶联剂可以增加木塑复合材料的抗冲击强度,但会对复合材料的抗拉强度和抗弯强度造成负面的影响。对木塑复合材料的动态力学性能和微分扫描热量分析研究表明,以铝酸酯作为偶联剂,对木塑复合材料的储存模量和损失模量有少许增加,同时可降低材料的熔点和熔解热。利用扫描电镜观察木塑复合材料的木材与塑料界面发现,经铝酸酯处理过的木材与聚丙烯复合界面之间具有更好的相容性。这些研究结果表明,在木塑复合材料制造过程中利用廉价的铝酸酯作为木材化学改性剂,对改善复合材料的性质同样起作良好的作用。图6 表2 参16。  相似文献   

9.
木塑复合材料(wood plastic composites,WPCs)的物理力学性能和加工性能优异,能防水耐腐、防虫蛀,是制造家具的理想材料,在家具产品设计和制造领域已有应用,但潜力尚未得到充分开发。阐述木塑复合材料的挤出成型、注射成型、热压成型、模压成型和增材制造技术的成型原理及制品性能特点,分析利用不同成型技术生产的木塑家具造型、结构设计现状,并针对木塑家具设计开发提出参数化技术深化造型、模块化思维拆分结构、数值模拟技术验证方案与工艺可行性的建议。  相似文献   

10.
指出了木塑复合材料具有耐腐蚀性能好、耐低温、机械性能好、无有毒气体释放等优点,其优异的物理化学性能使其成为一代新型的环保复合材料,在生活和生产中得到广泛的应用,对于木材替代材料的发展具有重要意义。以聚丙烯为基体材料,以木质纤维作为填料,制备了聚丙烯木塑材料,采用热压成型原理制备木塑复合材料板材,并进行了力学性能、热稳定性、吸水性等性能测试。研究了木粉细度、木粉含量、聚乙烯增韧聚丙烯的配比、采用不同偶联剂LD-125、KH-550、KH-570进行改性等因素对聚丙烯木塑复合材料性能的影响。运用单因子试验和正交试验方案,探讨了聚丙烯木塑复合材料力学性能的影响因素,并优化了工艺配方的方案,对聚丙烯木塑复合材料的研究与开发具有重要的意义。  相似文献   

11.
聚丙烯比例对木塑复合材料性能的影响   总被引:3,自引:0,他引:3  
通过正交试验,以木材纤维和废旧聚丙烯塑料为原料,异氰酸酯或马来酸酐作偶联剂,压制木材纤维/聚丙烯复合材料,研究聚丙烯(简称PP)用量对木塑复合材料性能的影响。结果表明,聚丙烯比例对复合材料的内结合强度、吸水厚度膨胀率、静曲强度和弹性模量有不同的影响。在热压时间、热压温度、复合材料密度相同的条件下,用异氰酸酯(简称MDI)作偶联剂,聚丙烯用量40%时复合材料的性能最佳;而用马来酸酐(简称MA)作偶联剂,聚丙烯用量50%时复合材料的性能最佳。  相似文献   

12.
通过对超细木粉的形态分析,提出了超细木粉颗粒的粒径范围为600~1 500目;介绍了超细木粉加工设备的结构与原理,分析了制备超细木粉的粉碎过程及粉碎力,以及超细木粉的制备方法及所采用的设备对粉体产品的粒度大小、粉体形状及分散性等的影响。提出采用高速旋转搅拌式磨削粉碎方法,将粉碎设备与粉体分级设备连为一体,对未达到加工目数要求的颗粒进行循环式加工,提高了加工效率;在分级装置的不同位置安放两个转速不同的离心风机形成不规则的气流流场,能减少木粉收集时的颗粒团聚,提高了粒度分布的均匀性和木粉质量。  相似文献   

13.
由聚丙烯(PP)、高密度聚乙烯(HDPE)和聚苯乙烯(PS)组成的混合废旧塑料与木粉经高速混合机混合后,采用双螺杆/单螺杆串联挤出机组制备了木粉/混合废旧塑料复合材料。探讨了马来酸酐接枝苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS-g-MAH)和原位接枝马来酸酐(MAH)对木粉/混合废旧塑料复合材料力学性能的影响。结果表明,与使用MAH和DCP的原位反应共混相比,SEBS-g-MAH显著提高了复合材料的抗冲击性能,但对拉伸和弯曲性能的改善不如原位反应共混显著。总的来说,混合废旧塑料制备的复合材料的力学性能要低于纯塑料混合物制备的复合材料,尤其是拉伸断裂伸长率。微观形态研究表明,添加SEBS-g-MAH和原位接枝MAH均可提高木粉与塑料混合物之间的界面相容性,但与添加SEBS-g-MAH相比,原位接枝MAH能更好的改善PP、HDPE、PS与木粉之间的界面结合。原位接枝MAH可被看作是一种改善木粉与塑料混合物间界面相容性的有效途径。此外,采用动态力学分析(DMA)进一步表征了复合材料的储能模量和阻尼因子。  相似文献   

14.
马来松香对木粉/HDPE复合材料流变性质的影响   总被引:2,自引:1,他引:1  
用马来松香对木粉进行流动性能改善处理,与高密度聚乙烯(HDPE)熔融复合,挤出成型制备木粉/HDPE复合材料(WF-HDPE).利用傅里叶变换红外光谱(FTIR)和X-射线光电子能谱(XPS)技术,分析经马来松香改性前后木粉表面官能团的变化和元素的变化,采用旋转流变仪研究.WF-HDPE的流变行为.FrIR与XPS分析表明,马来松香分子中的酸酐基团与木粉表面的羟基发生了酯化反应,并且马来松香是以单酯的形式接枝到木粉表面,同时产生一游离羧基.WF-HDPE流变学研究表明:复合材料的复合黏度(η*)、储能模量(G′)和损耗模量(G″)随马来松香用量的增加先减小后增大最后减小,但体系的黏度和模量总体呈下降趋势,木粉经马来松香改性后复合熔体的流变性能显著改善,这不仅有利于提高复合材料的成型加工效率,而且适当的马来松香处理也能够提高复合材料的拉伸强度和弯曲强度,后者被静态力学试验结果所证实.  相似文献   

15.
以淀粉和木粉为原料,甘油为增塑剂,通过挤出成型制备淀粉/木粉可生物降解复合材料,重点研究淀粉/木粉混合比例对复合材料性能的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)和热重分析(TGA)对复合材料进行表征,并对复合材料的力学性能和吸水性能进行测试。实验结果表明:木粉的加入破坏热塑性淀粉的连续性,使复合材料的结晶度增大。复合材料的拉伸强度、吸水率和吸水厚度膨胀率随着木粉比例增大逐渐增大,断裂伸长率却逐渐降低。TGA测试结果表明,随着木粉加入比例增大,复合材料的热分解起始温度逐渐降低,但热分解的终止温度逐渐升高,淀粉和木粉两相依赖性逐渐减弱。  相似文献   

16.
木塑复合材料是以木材或各种木质纤维素为基体,与塑料以不同途径复合形成的一种新型材料。通过对木塑复合材料特点、性能的总结,指出其在家具领域应用及推广中存在的问题,并提出改进措施,同时展望了木塑复合材料在家具领域的应用前景。  相似文献   

17.
微发泡木塑复合材料耐腐性能的研究   总被引:1,自引:0,他引:1  
研究了5种不同木塑比的木塑复合材料的天然耐腐性能。结果表明:①木塑复合材料的天然耐腐性能为强耐腐等级,受菌侵染后质量损失率随着木粉含量的提高而增大,但均小于3.5%,方差分析表明,木粉含量对试件质量损失率的影响高度显著,指数函数y=a×exp(x/b)+c对5种木塑材料的平均质量损失率拟合结果较好,决定系数R2为0.923 58;②通过SEM和DSC分析,木塑材料受菌侵染后,主要是木质材料受到了破坏。  相似文献   

18.
The effect of steam-exploded wood flour (SE) added to wood flour/plastic composite was examined using SE from beech, Japanese cedar, and red meranti and three kinds of thermoplastic polymer: polymethylmethacrylate, polyvinyl chloride, and polystyrene. Addition of SE increased the fracture strength and water resistance of the composite board to an extent dependent on the polymer species and the composition of wood/SE/polymer. However, water resistance decreased with the increasing proportion of SE when SE meranti was added. Effects of the wood species of SE on the properties of resulting board were small. An increased moisture content of wood flour or SE (or both) increased the variation of board performance.  相似文献   

19.
【目的】通过木粉纤维增强生物塑料聚3-羟基丁酸酯-co-4-羟基丁酸酯(P34HB),为生物复合材料的理论研究和生物可降解塑料的广泛应用提供科学依据和理论支持。【方法】以毛白杨木粉和P34HB为原料,采用共混热压法制备P34HB/木粉生物复合材料,基于电子扫描显微镜(SEM)、差示扫描量热法(DSC)、热重分析(TGA)、傅里叶红外光谱(FTIR)、动态热机械分析(DMA)和力学性能分析等手段对其结构和性能进行表征。【结果】随着木粉含量增加,生物复合材料的拉伸强度、断裂伸长率和弯曲强度先增加后减小,冲击强度逐渐下降,拉伸强度、弹性模量和杨氏模量分别增加89%、59%和103%,储能模量E′逐渐增加,tanδ峰值先下降后上升。生物复合材料的高频率模量大于低频率模量,动刚度比静刚度好。相比P34HB,生物复合材料的热分解区间变宽,热解速率变慢,热解剩余质量增加。【结论】随着木粉含量增加,P34HB分子链运动受阻,生物复合材料的储能模量和脆性增大;同时,木粉纤维的成核作用诱导P34HB形成结晶度高、层状结构发达的横晶层,木粉与P34HB之间界面结合力增强,力学性能和热稳定性明显提高。综合考虑,P34HB/木粉生物复合材料的最佳木粉加入量为50%。  相似文献   

20.
介绍了木塑百叶窗的性能、木塑复合材料的研究现状及其发展趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号