首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 273 毫秒
1.
以植保无人机通信系统为研究对象,分析了原有的串口通信方式存在信息传输通道分配不合理及信息传输效率低的弊端。为对通信系统进行改善,基于物联网架构对原有的串口通信方式分别进行软件及硬件设计改进,完成基于物联网架构的植保无人机通信系统设计。对系统运行环境进行模拟,进行对比试验,结果表明:基于物联网架构的植保无人机通信系统可有效降低信息传输过程中出现的通道分配不合理概率,可大幅度提升信息传输效率。  相似文献   

2.
植保无人机凭借其低成本、高效率、精准快速作业等优点,在农业植保领域得到快速发展,成为现代农业的一种重要装备。为了能够实时远程监控农用植保旋翼无人机的飞行状态信息,提高无人机飞行作业安全和作业质量,进行更好的飞行控制管理,设计并实现了植保旋翼无人机地面监控系统,可实现与植保无人机的远距离实时通信、监测飞行姿态、显示飞行作业轨迹和飞行控制等操作。地面监控系统采用嵌入式树莓派2作为硬件平台,2.4G无线模块实现数据收发,使用跨平台C++图形用户界面应用程序框架Qt对地面监控系统软件功能和交互界面进行开发,并制定了旋翼无人机与地面监控系统之间的数据通讯协议。该系统实际测试表明:监控系统可长时间连续稳定的工作,有效实现了对农用植保旋翼无人机实时监控与操作。  相似文献   

3.
以植保无人机通信网络安全为研究对象,通过对植保无人机总体应用技术及无人机通信系统进行分析,分析了无人机通信网络安全的影响因素,并提出一种通过飞行轨迹进行安全预测、通信网络中注入噪音以及协作多点通信方式的网络通信优化措施。仿真实验表明:该优化措施能够有效地保障植保无人机在作业过程中通信数据传输安全性,具有一定的推广价值。  相似文献   

4.
设计开发基于nRF24L01的无人机植保无线数据传输采集控制系统,该系统主要由机载作业系统和地面遥控作业系统两部分组成。机载作业系统由51单片机将无人机植保作业系统传感器及作业状态数据采集计算,通过nRF24L01无线数据传输模块,与地面遥控作业系统进行控制数据的双向传输,实现无人机植保作业信息的数据传输以及作业控制。介绍植保系统的硬件结构组成、无线传输软件设计、无线传输协议和参数设定以及软硬件的调试。通过实际应用,该系统运行平稳,性能可靠,实现植保作业的数据精准化、控制变量化。  相似文献   

5.
针对现有的农机作业信息远程传输系统产品功能过于单一,无法满足日益增长的农机监管需求,且在无线网络信号差的地块存在数据丢失的问题,开发一种基于ARM的农机作业信息远程传输系统,选用STM32F103作为主控制芯片,通过CAN总线采集作业的数据信息,通过RS232串口采集作业的图像信息,采用集成化的SIM808模块来采集卫星定位信息和实现远程数据传输功能,同时设计远程数据传输协议和数据补传系统,可以实现即使在田间GPRS移动无线网络信号丢失时的农机作业的数据信息、空间信息和图像信息的远程传输。试验结果表明,该远程传输系统无线通信数据丢包率小于等于0.2%,数据补传成功率100%,系统功能全、通信可靠性和安全保障机制高,对提升农业装备机械化与信息化融合具有重大的意义。  相似文献   

6.
为进一步提升植保无人机田间作业效率,从参数优化角度出发,对机体的飞控系统进行性能分析。通过全面理解植保机飞控系统原理,明确其控制流程,具体分析无人机作业变异系数、喷施压力、飞行高度与角度等参数间的内在关联,建立以影响飞控系统性能的各项参数为条件的二次性能指标控制模型。进行飞控系统的硬件与软件设计,并进行植保机飞控系统性能稳定性及参数优化可行性试验。结果表明:在频率7Hz、飞行速度为1.5m/s的条件下,系统理论轨迹偏差与试验轨迹偏差间的误差较小,可控制在±0.2%,且在20%~60%占空比范围内,占空比与轨迹误差存在负相关趋势。试验过程中,整机运行稳定,可为植保无人机及其他自动化田间作业设备的深度优化提供一定的参考思路。  相似文献   

7.
为进一步提高植保无人机的通信质量与整机作业效率,以多频与无线传感融合通信机理为出发点,针对其通信系统进行设计。在深入理解无人机作业特点与通信控制目标的基础上,侧重通信链路质量与数据收发成功率等关键指标,建立无人机多频无线传感通信模型,以通信系统多频与无线传感融合设计框架为依托,进行硬件选型与软件控制模块设计。多频无线传感融合通信试验表明:通信系统经合理调度及多频无线融合,通信误差率平均可保持在2.889%,整机一次作业完成时间效率提高了12.83%;作业过程各通信节点设置准确合理,整机工作效率可由传统无线式的89.90%提高到93.20%。该设计满足多频融合数据传输稳定、高效的作业要求,具有很好的参考价值。  相似文献   

8.
为进一步提升我国农业植保无人机的精准作业效率,针对其操控系统展开优化研究。选定KNN神经网络算法为执行理念,以无人机作业控制原理为基础,搭建正确的过程参数动态计算模型,进行操控系统的算法实现与调控配置,并展开基于KNN神经网络的无人机喷施作业试验。试验结果表明:KNN神经网络算法下的无人机操控系统运行稳定,过程参数的分类准确率相对提高了8.00%,目标喷施流量与试验喷施流量的偏差率相对降低了5.71%,农药喷施均匀度可提升至94.75%,整机作业综合效率明显提升。此设计理念以计算机智能数据处理为出发点,对无人机的高效率全面发挥有一定的推动作用,可用于类似智能农机装备的控制系统改进与开发,具有一定的参考价值。  相似文献   

9.
为进一步提升我国植保无人机通信系统的作业效率,基于迭代计算思维,针对其无线通信信号的识别与处理模块展开分析。以通信路径原理为基础,以通信信道资源识别、功率改进为切入点,搭建准确的通信迭代计算模型,进行特性分析与关联匹配设置,并展开整机通信作业参数试验效果验证。结果表明:基于迭代算法分析的无线通信信号识别与处理各模块功能运行稳定,信号时延率与信道误码率均相对降低,通信的识别准确率相对提升8.94%,整体通信综合效率提升至96.93%。此迭代算法分析准确,设计效果明显,对于类似智慧型农机装备的通信质量与通信效率提升有较好的参考价值。  相似文献   

10.
为提高水肥一体机的作业效率与原料利用率,针对其核心部件间通信系统的接口方式进行了嵌入式设计。以理解水肥一体机作业机理为基础,将SQL数据库与嵌入式通信相结合,采用双路信号检测与多路施肥作业通道,搭建水肥一体机数据通信模型。根据通信系统嵌入式并行处理流程进行硬件配置,根据实现通信接口功能不同进行通信软件程序设计,依照通信系统传输协议执行流程进行水肥一体机嵌入式通信接口运行试验。试验结果表明:嵌入式通信理念应用到水肥一体机,通信成功率保持在91%以上,可节约灌溉量55.4kg/hm~2,节水率与节氮率较传统控制分别提升了13.14%和23.62%,具有较好地推广价值,可为类似农机设备优化设计提供参考。  相似文献   

11.
汤东 《农机化研究》2021,(3):254-259
为进一步提升无人植保机应用的合理性与高效性,以大数据运作平台技术为支撑,针对其作业布局展开研究。通过系统分析植保机作业过程与主要控制组件,根据田间飞行作业特点,确定系列核心控制参数,并依据大数据布局内部算法分配规则建立大数据运作模型。同时,考虑各系统模块的数据耦合性,生成大数据运作平台下的植保机作业布局并进行试验,结果表明:在各自占空比一定条件下,喷洒流量在0.3~0.6L/min波动时,所获取的流量误差控制在6.33%~15%;选取关键对比控制参数,较一般作业布局状态而言,基于大数据平台作业布局下的植保机续航能力可提升7.79%,试验效果良好。该布局优化充分提高了植保机的作业效率,可为类似农机系统布局提供改善思路。  相似文献   

12.
为实现多个农机在农田环境中自主导航协同作业,设计了基于TD-LTE的多机协同导航通信系统。该系统由导航定位传感器、无线通信模块、车载控制终端和远程通信软件组成,其中:传感器包含GNSS接收机、惯性测量单元(IMU)和角度传感器,用于获取每台农机的地理位置、自身姿态和车辆转向角信息。无线通信模块采用4G DTU作为系统通信设备,与车载终端串口相连,实现RS232串口转TD-LTE网络功能。4G DTU经配置软件配置好串口参数等信息后,连接目的服务器IP地址和端口号,将车载传感器采集的数据按设计好的通信协议经TD-LTE网络传输到远程服务器的通信软件中。车载控制终端采用工控机(IPC),实现农机自动导航控制与人机交互。远程通信软件应用Socket网络编程开发了数据接收显示与数据发送的功能模块。系统对每台农机的状态信息实时上传的同时也可以接收远程服务器端对多台农机的协同控制命令,对于软件界面中显示的在线农机,可以根据优先级有选择的进行通信。以4台雷沃欧豹拖拉机为试验平台,每台农机状态信息的发送频率为5Hz,进行了系统稳定性试验测试,丢包率均为0.1%,且均无延迟,系统具有较高的可靠性与实时性。  相似文献   

13.
遆佳  李霁 《农机化研究》2022,44(2):245-248
以Android为系统开发平台,设计一种植保无人机监控系统,可实现植保无人机飞行过程的移动控制.通过对植保无人机监控系统功能模块进行设计,并从Android基础理论出发,进行植保无人机控制系统软件设计,完成无人机植保作业过程中的状态监控及飞行控制.测试结果表明:该植保无人机监控系统能够有效地对无人机飞行过程进行控制.  相似文献   

14.
针对目前农用植保无人机(UAV)自主避障能力弱及避障系统繁琐等问题,提出了一种适用于植保无人机的基于深度学习的端到端自主避障方式。利用植保无人机挂载的双目相机实时采集图像,当检测到障碍物与植保无人机距离≤5m时,自主避障系统启动,将采集图像预处理后输入卷积神经网络,输出姿态角与油门量控制无人机自主飞行与避障,同时卷积神经网络通过手动飞行采集信息进行训练。实验结果表明:该方法能使植保无人机对农田常见障碍物房屋、树木、电线杆等做出自主避障,且模型具有一定的泛化能力,适当训练后,可将此避障方式应用于复杂环境下的植保无人机自主避障。  相似文献   

15.
农田灌溉对于提高农作物产量具有重要作用,灌溉管网漏损实时在线监测对提升农田用水效率具有积极的现实意义。本文设计基于嵌入式的农田灌溉管网漏损智能监测系统,通过压电加速度传感器、压力变送器和超声波流量计等传感器信号采集,获取农田灌溉管网的振动噪声、水压和流量等数据,通过嵌入式单片机自适应滤波处理后,应用4G无线数据通信模块,将传感器采集的数据传输到云平台,云平台应用管理软件系统对灌溉管网监测数据进行实时处理和分析,从而准确确定灌溉管网漏损情况。试验结果表明,在非灌溉时间测试管网漏损状态,系统能够有效采集噪声、水压和流量等传感器数据,噪声数值超过预警值80 dB并进行报警。数据在无线网络中传输稳定高效,数据无线传输延时小于1.8 s。云平台应用管理软件系统功能正常,数据查询平均响应时间小于1.2 s。系统部署实施快捷,可广泛应用于农田灌溉管网运行状态实时监测,有效提高农田灌溉用水效率进而实现用水精细化管理。  相似文献   

16.
设计了一套高精度、高可控性的无人机喷洒模拟平台,并进行了试验验证。该系统机械部分采用直线导轨结合伺服电机,最大承载质量50 kg,控制部分采用MFC设计上位机控制软件,与主控板STM32通过串口进行通讯,实现对水平和垂直2个方向上伺服电机的控制,同时采用CAN总线与喷洒控制器通讯和远程操控,可以实现喷洒流量控制以及旋翼风速控制。为评价系统运行精度,采用激光测距仪分别对系统在水平运动速度0.05、0.10、0.15、0.20 m/s下和垂直运动速度0.01、0.02、0.03、0.04 m/s下的控制距离进行距离测量,结果显示,垂直和水平方向上,控制参数与实际行程决定系数R2=1,水平与垂直重复精度优于2 mm,系统控制精度高;采用振动测试仪对系统在0.05、0.10、0.15 m/s运行速度下进行测试,通过分析振动数据,在不同运动速度下系统振动均不超过20 m/s2,其中X向和Y向在运行中存在较为稳定的4~5 m/s2的加速度,系统运行稳定。本系统可以有效降低喷洒试验载具成本,降低试验风险。  相似文献   

17.
针对国内外农机装备智能化发展及设备物联远程网控需求,基于ISO 11783系列标准,提出并设计了联合收获机智能CAN总线方案及其应用系统。根据联合收获机的作业特点和智能控制需求,建立了由动力CAN总线、设备管理CAN总线、专用设备CAN总线1和专用设备CAN总线2组成的模块化、可扩展的智能农机CAN总线网络结构。基于ISO 11783 CAN总线应用层协议标准,制定了智能化联合收获机远程网控通信协议。最后,进行了联合收获机CAN总线应用系统网络负载和实时性的通信试验及工程应用试验验证。试验结果表明,在500 kb/s波特率下,所有总线的负载率均小于30%,数据在3层CAN总线之间传输总延时小于1 ms,满足联合收获机智能远程网控CAN总线系统的设计要求。  相似文献   

18.
搭载高性能传感器和施药装备的农业植保无人机系统是精准农业领域具有代表性的智能装备之一。本研究首先从前端田间作业环境动态感知技术出发,阐述了无人机光谱成像遥感、多传感器融合的SLAM实时环境建模等技术在无人机植保作业方面的应用情况;然后对精准施药过程建模与优化控制有关的前沿技术进行了分析,包括旋翼下方风场结构演化及雾滴沉积过程仿真建模、多区域全覆盖条件下的智能作业路径规划、精准变量施药控制等;最后论述了作业效果评估与过程监管相关技术的发展现状,包括施药作业质量评价方法、基于云平台数据管理的全过程可视化监管等。在总结现有技术发展现状基础上,对未来智能化无人机植保关键技术发展趋势进行了预测,阐明了光谱图像获取与计算智能的深度学习识别聚类、基于高精度雾滴谱和风场模型预测的精准变量施药作业路径规划、基于传感器实时数据的作业质量评估和作业监管等新技术手段,将在遥感信息反演、药液飘移抑制、作业效率优化、施药过程管控等方面带来革命性的进步,使植保作业数据化、透明化,全过程可观化可控制,推动农业生产管理从机械化向智能化和智慧化迈进。  相似文献   

19.
赵峰  姜攀 《农机化研究》2019,(1):226-229
无人机是一个由飞行器、控制站、通讯设备和其它部件形成的系统,在农业领域主要应用于农药喷洒、信息监测和农业保险勘察。农业无人机在飞行过程中的实际航线与规划航路之间会存在偏差,不仅降低了作业质量,还会影响作业效率。无线传感网络是一种与无人机紧密结合的技术,可以用于对无人机的航线进行控制。为此,基于无线传感网络,设计了无人机的航线控制系统。该系统由无人机平台、传感节点、汇聚节点和控制中心4部分组成,对航线的控制通过二维坐标系跟随算法完成。试验结果表明:无线传感网络对直线和曲线航线的跟踪更加稳定,具有较高的航线控制精确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号