首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
微生态制剂在水产养殖业中的应用(连载二)   总被引:2,自引:0,他引:2  
2、复合微生物制剂:是一类多菌种的微生物制剂。在光合细菌研究的基础上,随着研究的不断深入,又开发出许多优于光合细菌的产品应用于水产养殖业。(1)益生素:是一种全面改善水质的微生物制剂,其主要成分有芽孢杆菌、枯草杆菌、硫化细菌、硝化细菌、反硝化细菌等多种微生物。它能分解水中的有机物,降解氨态氮、亚硝酸盐、硫化氢等,改善池底的厌氧环境,抑制水体中藻类过量繁殖,保持养殖水体微生态平衡。益生素中的硝化细菌能将水体中的亚硝酸盐转化为硝酸盐;反硝化细  相似文献   

2.
用EM菌、高效菌、底净剂调节水质试验   总被引:1,自引:0,他引:1  
黄培铃  蒋焕彬 《河北渔业》2007,(1):26-28,59
将人工生产的微生态制剂EM菌、水产高效菌和底净剂引入水产养殖环境中,检测池塘水质因子变化。结果表明:微生态制剂EM菌、水产高效菌和底净剂等水质调节剂可以通过菌体代谢有效降低底质与水体中的有害物质、亚硝酸盐、氨氮、COD,改良底质,净化水质,通过微生物竞争作用,抑制底质及水体有害致病微生物、有害藻类的生长与繁殖,促进有益藻生长、繁殖与稳定水质。  相似文献   

3.
微生态制剂在凡纳滨对虾高位池养殖中的应用   总被引:1,自引:0,他引:1  
王艺红 《水产养殖》2010,31(12):25-26
<正>近年来,随着生态、健康养殖的发展,微生态制剂逐渐应用于水产养殖。在水产养殖方面的微生态制剂使用方式可分为两种大类:一类是水质微生态调控剂及投入水体中用以改良水质,主要有光合细菌、芽孢杆菌、硝化细菌、反硝化细菌等;另一类是体内微生态改良剂及内服以提高水生动物免疫力,应用较多的有乳酸菌、酵母菌等。  相似文献   

4.
本实验模拟工厂化养殖模式建立养殖水体净化装置,研究硝化毛球和底沙对硝化细菌净化效果的影响,结果表明:装载硝化毛球、铺设底沙和只投加硝化细菌制剂的三个实验组对养殖水体水质具有一定的净化效果,氨氮、亚硝氮等指标均低于空白组。其中装载硝化毛球的实验组氨氧化细菌、亚硝酸盐氧化细菌可在短时间大量生长繁殖,形成优势,使养殖池氨氮、亚硝酸盐浓度维持在较低水平;铺设底沙的实验组对硝化细菌净化水质效果影响不大。装载硝化毛球的实验组,水质最清澈,无异味,养殖池底部无残渣碎屑,青虾生长状况良好,增重最多。  相似文献   

5.
《内陆水产》2001,26(10):32-33
益生净水复合菌是汉宝集团应用现代生物工程技术开发的绿色环保型复合活菌水质净化剂,是专门针对水产养殖池塘水质特点,精心选培活菌菌种并复配而成,含有从自然界分离培养出的光合细菌、芽孢杆菌、乳酸菌、酵母菌、反硝化细菌、亚硝化细菌多种有益菌株,通过驯化、复壮和单克隆技术培育后复合而成,是高密度养殖净化水质的最佳用品。本品投放到水体后,休眠活菌很快复苏繁殖,迅速分解水体中过量的有机污染物,转化并消除水中有害氨基氮,亚硝基氮,硫化氢等物质,本品对水产动物无任何毒副作用,是净化水质,预防疾病、促进健康养殖、生…  相似文献   

6.
巨大芽孢杆菌MPF-906对养鱼水质净化的初步研究   总被引:9,自引:0,他引:9  
以鲫鱼为对象,利用从水产养殖水体中分离得到的巨大芽孢杆菌MPF-906,研究了其微生态制剂同步净化养鱼水质的动态变化。结果显示,在水族箱中添加巨大芽孢杆菌MPF-906制剂后,与对照组相比,水中的亚硝酸盐显著降解,COD也有所下降,pH值稳定在7.78 ̄8.19之间,表明巨大芽孢杆菌微生态制剂对净化养鱼水质和调节养殖水体微生态结构稳定具有明显的作用,其最适使用浓度为4×108CFU/mL。  相似文献   

7.
张冬冬 《齐鲁渔业》2020,37(2):18-19
锦州是辽西地区海水养殖规模最大最集中的区域,主导养殖品种是海参和中国对虾。在参、虾混养过程中多使用微生态制剂对池塘进行改善水质、调节微生态平衡、抑制病原微生物生长等。光合细菌简称PSB,是优质的水质改良剂和饲料添加剂。在水产养殖过程中,多使用红色假单胞菌属的混合菌株[1],它能够降解水体中的亚硝酸盐、硫化物等有毒物质,中国水产科学研究院将PSB应用于池水净化,对虾养殖池塘应用PSB后,氨态氮下降58%,硫化氢下降50%,溶氧增加13.6%[2],邢华3利用PSB对虾池进行净化.  相似文献   

8.
正微生态制剂具有改善水产养殖环境,预防水质突变和鱼病爆发,提高水产品质量的作用。微生态制剂按照用途可分为两大类,一类为养殖水体水质微生物改良剂,用于改善池塘底质和水质;另一类为养殖动物体内微生态改良剂,主要用于改善养殖动物体内微生物群落组成和结构。在水产动物营养与饲料加工、养殖水体调控等方面微生态制剂的作用逐渐被广泛关注。近年来,随着科学技术的快速发展以及人民生活水平的不断提高,水产养殖业也  相似文献   

9.
闫超  刘璇  张瑞丽  宋志文 《河北渔业》2011,(12):13-16,23
硝化细菌是一种在水产养殖中应用较为普遍的微生态制剂,对于养殖水体水质净化至关重要,养殖系统中消毒剂和抗生素的使用会对硝化细菌活性产生不同程度的影响.本研究选取4种消毒剂(高锰酸钾、硫酸铜、戊二醛和84消毒液)和2种抗生素(土霉素和磺胺),研究不同浓度条件下消毒剂和抗生素对硝化细菌菌剂活性的影响.结果表明,4种消毒剂中高...  相似文献   

10.
低温硝化细菌培养装置的设计研究,利用低温硝化细菌的硝化和反硝化过程,使养殖水体中的有毒物质氨氮转化为氮气并从水体中释放出来,养殖水体得到充分净化可以循环使用,达到节约水资源和水处理费用的目的,具有结构简单、自动控制的功能,有利于封闭循环水产养殖业向健康方向发展,促进低温硝化细菌的发展进程。  相似文献   

11.
为提高内循环流水养殖池塘净化区域的净化能力,从重庆潼南区内循环流水养殖池塘的底泥中分离纯化得到一株光合细菌(命名为菌株GR01)。通过形态学观察、生理生化鉴定、16S rDNA基因序列分析和扫描吸收光谱,对菌株进行分类鉴定。测定菌株GR01在不同温度、不同pH、不同盐度条件下的660 nm处的吸光度(A660),确定其最优培养条件。测定氨氮(NH3-N)、亚硝酸盐氮(NO2--N)、总氮(TN)、总磷(TP)含量,探究在室内模拟条件下该菌株对内循环流水养殖池塘净化区水体的去污能力。结果显示:菌株GR01为北京红篓菌(Rhodocista pekingensis),最适生长温度为28℃,最适pH为8.0,最适盐度为10‰,该菌株对尾水中NH3-N、NO2--N、TN和TP去除率分别为57.42%、28.74%、32.67%、32.85%。研究表明,菌株GR01对氮、磷具有明显的去除效率,其中对氨氮的去除效率最高,与内循环流水养殖模式结合具有潜在的应用价值。  相似文献   

12.
为解决淡水池塘集约化投饲养殖水体的营养物质富集问题,采用围隔试验方法,研究了蕹菜(Ipomoea aquatica)和水鳖(Hydrocharis dubia)两种植物对泥质和沙质两种底质养殖水体的净化效果。研究发现:泥质底水体的氨氮、亚硝酸盐氮和总磷(TP)自净去除率显著低于沙质底,而泥质底水体的高锰酸盐指数(CODMn)自净去除率显著高于沙质底(P<0.05);不同底质水体中,两种植物对水体氨氮、亚硝酸盐氮、总氮(TN)和CODMn的去除率显著高于相应对照组(P<0.05);12.5%与25.0%的水鳖处理对营养物质的去除率基本无显著差异(P>0.05),12.5%的蕹菜与水鳖处理组仅在泥质底水体中水鳖(MSBI)对氨氮的去除率显著小于蕹菜(MKC)以及MSBI对亚硝酸盐氮的去除率显著高于MKC(P<0.05);泥质底水体中植物处理对氨氮、亚硝酸盐氮、TN、TP和CODMn的最大去除率分别为60.07%、54.78%、52.68%、23.96%和47.32%,沙质底分别为72.43%、83.54%、57.20%、37.07%和40.75%;此外,试验末植物处理组水体的所测营养物质均存在一定程度的上升。沙质底水体中氨氮、亚硝酸盐氮和TP等营养物质波动较大且自净去除率高于泥质底;在泥质和沙质底水体中蕹菜和水鳖浮床均具有显著净化作用,本地种水鳖可作为生态浮床的潜力净水植物;浮床应用过程中应加强收割与收获等管理,以避免水体二次污染。  相似文献   

13.
Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial culture RAS application. Four carbon sources were evaluated including methanol, acetic acid, molasses and Cerelose™, a hydrolyzed starch, to determine their applicability under commercial culture conditions and to determine if any of these carbon sources encouraged the production of two common “off-flavor” compounds, 2-methyisoborneol (MIB) or geosmin. The denitrification design consisted of a 1.89 m3 covered conical bottom polyethylene tank containing 1.0 m3 media through which water up-flowed at a rate of 10 lpm. A commercial aquaculture system housing 6 metric tonnes of Siberian sturgeon was used to generate nitrate through nitrification in a moving bed biological filter. All four carbon sources were able to effectively reduce nitrate to near zero concentrations from influent concentrations ranging from 11 to 57 mg/l NO3–N, and the maximum daily denitrification rate was 670–680 g nitrogen removed/m3 media/day, regardless of the carbon source. Although nitrite production was not a problem once the reactors achieved a constant effluent nitrate, ammonia production was a significant problem for units fed molasses and to a less extent Cerelose™. Maximum measured ammonia concentrations in the reactor effluents for methanol, vinegar, Cerelose™ and molasses were 1.62 ± 0.10, 2.83 ± 0.17, 4.55 ± 0.45 and 5.25 ± 1.26 mg/l NH3–N, respectively. Turbidity production was significantly increased in reactors fed molasses and to a less extent Cerelose™. Concentrations of geosmin and MIB were not significantly increased in any of the denitrification reactors, regardless of carbon source. Because of its very low cost compared to the other sources tested, molasses may be an attractive carbon source for denitrification if issues of ammonia production, turbidity and foaming can be resolved.  相似文献   

14.
异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification, HN-AD)脱氮技术可在好氧条件下同步实现硝化/反硝化过程,在海水养殖废水生物脱氮处理中具有显著的优势。文章梳理了海水环境中HN-AD菌的分离筛选研究,结合关键功能基因和酶系分析了HN-AD脱氮途径与机制,归纳了碳源、碳氮比、溶解氧、氮源、温度、pH以及新型污染物等主要环境因子对HN-AD菌脱氮效果的影响。今后需进一步通过常规和分子生物学手段获得高效脱氮菌株,借助多组学手段阐明脱氮途径机制,厘清环境因素影响HN-AD菌的分子生物机制以获得最优工艺参数。  相似文献   

15.
Denitrification in recirculating systems: Theory and applications   总被引:20,自引:0,他引:20  
Profitability of recirculating systems depends in part on the ability to manage nutrient wastes. Nitrogenous wastes in these systems can be eliminated through nitrifying and denitrifying biofilters. While nitrifying filters are incorporated in most recirculating systems according to well-established protocols, denitrifying filters are still under development. By means of denitrification, oxidized inorganic nitrogen compounds, such as nitrite and nitrate are reduced to elemental nitrogen (N2). The process is conducted by facultative anaerobic microorganisms with electron donors derived from either organic (heterotrophic denitrification) or inorganic sources (autotrophic denitrification). In recirculating systems and traditional wastewater treatment plants, heterotrophic denitrification often is applied using external electron and carbon donors (e.g. carbohydrates, organic alcohols) or endogenous organic donors originating from the waste. In addition to nitrate removal, denitrifying organisms are associated with other processes relevant to water quality control in aquaculture systems. Denitrification raises the alkalinity and, hence, replenishes some of the inorganic carbon lost through nitrification. Organic carbon discharge from recirculating systems is reduced when endogenous carbon sources originating from the fish waste are used to fuel denitrification. In addition to the carbon cycle, denitrifiers also are associated with sulfur and phosphorus cycles in recirculating systems. Orthophosphate uptake by some denitrifiers takes place in excess of their metabolic requirements and may result in a considerable reduction of orthophosphate from the culture water. Finally, autotrophic denitrifiers may prevent the accumulation of toxic sulfide resulting from sulfate reduction in marine recirculating systems. Information on nitrate removal in recirculating systems is limited to studies with small-scale experimental systems. Packed bed reactors supplemented with external carbon sources are used most widely for nitrate removal in these systems. Although studies on the application of denitrification in freshwater and marine recirculating systems were initiated some thirty years ago, a unifying concept for the design and operation of denitrifying biofilters in recirculating systems is lacking.  相似文献   

16.
一株干酪乳杆菌对养殖水体亚硝酸盐去除机理的研究   总被引:1,自引:0,他引:1  
为了解乳酸菌去除养殖水体亚硝酸盐的作用机理,实验研究了一株干酪乳杆菌L821a(Lactobacillus casei)对淡水鱼养殖水体亚硝酸盐的去除状况,通过对菌体、酶及代谢产物的实验,证明其去除亚硝酸盐的机理包括胞内酶作用、代谢产物乳酸的直接化学反应2H++3NO2-=NO3-+2NO↑+H2O作用和间接促进微生物反硝化作用3种作用机理。在养殖水体中主要以间接作用方式发挥作用。分析认为乳酸促进反硝化作用的原因在于为反硝化微生物提供了易于利用的有机碳源(能量物质)。  相似文献   

17.
生物质炭膜架作为一种新型填料,具有较高的单位比表面积,利于脱氮微生物群落的附着,净化污水能力较强,在未来人工湿地的运用中具有广阔前景。然而,水产养殖过程中的环境变化和渔药的使用,是否会妨碍人工湿地中填料作用的充分发挥尚未明确。为研究外界因素对生物质炭膜架除污能力的影响,设置了不同pH(E1:6.5、E2:7.5和E3:8.5)和常用渔药(F1:氟苯尼考,6 mg/L;F2:土霉素,20 mg/L)处理组,研究生物质炭填料系统降氨氮效率及其附着生物膜微生物群落结构的变化。结果表明:(1)实验组与对照组中,脱氮微生物硝化螺旋菌门(Nitrospirae)相对丰度均为最高;(2)E1、E2、E3组降氨氮速率分别为0.247、0.249、0.305 mg/(L·h),均低于对照组(pH=8.2):0.323 mg/(L·h);低pH条件下硝化螺旋菌的相对含量略有降低,而脱氮硫杆菌相对含量没有显著差异。(3)F1、F2组降氨氮速率一致,均为0.172 mg/(L·h),低于对照组0.323 mg/(L·h);与对照组相比,实验组硝化螺旋杆菌与脱氮硫杆菌相对含量无显著变化,推测氟苯尼考和土霉素抑制了菌的活性,致使氨氮降解速率下降。综上,弱碱性水体有助于提高生物质炭填料净化水质能力,而氟苯尼考或土霉素的使用会影响生物膜上脱氮微生物的群落丰度和活力并抑制降氨氮能力。因此,使用抗生素类渔药治疗时,应配合其它水质调节措施来控制养殖水体的氨氮含量,保证养殖对象安全,最大化发挥生物质填料的净化养殖尾水效果。  相似文献   

18.
通过海藻酸钠固定化微生物小球对淡水养殖废水中活性磷、氨态氮、硝态氮、亚硝氮、化学需氧量质量浓度的影响,研究海藻酸钠固定化微生物处理淡水养殖废水的可行性。结果显示,海藻酸钠小球在养殖废水中极易溶解,不仅造成水体浑浊,且原生动物等可能以海藻酸钠为营养基而大量繁殖,进而导致水体缺氧,化学需氧量、氨氮等质量浓度不降反升,固定化微生物对废水的净化作用则难以显现。由此可见,以海藻酸钠为材料进行微生物固定化不适用于淡水养殖废水的净化处理。  相似文献   

19.
基于硝化细菌、聚磷菌等微生物种群分布于自然水体中,且喜欢吸附在固体表面形成生物膜,吸收水中氨氮、亚硝酸盐氮、磷等营养成分进行繁殖和生长的生物学原理,研制了一个由支架浮力系统、微生物附着基、上升流系统、锁磷区和光伏发电系统5部分组成的圆柱形(半径75 cm、高100 cm)养殖水原位净化装置。试验结果显示:生物膜建成后,装置在1 mg/L、3 mg/L和5 mg/L氨氮质量浓度组的淡水(水温22~25℃)和海水(水温27~31℃)中,日消减氨氮量分别为304.587 g、283.748 g、314.753 g和247.274 g、261.756 g、282.721 g,日消减淡水和海水中总磷量分别为0.485 g、0.427 g、0.462 g和0.566 g、0.595 g、0.493 g,显示出较强的氨氮和总磷的消减能力。日氨氮消减量差异性,淡水3个质量浓度组间不显著(P>0.05),海水3个质量浓度组间显著(P<0.05)。日总磷消减量差异性,淡水3个质量浓度组间、海水3个质量浓度组间均不显著(P>0.05)。该装置具有较强的氨氮和磷的消减能力和使用方法简单、运行成本低等特点,可在水产养殖尾水净化处理中推广使用。  相似文献   

20.
实验从山东德州市一罗非鱼(Oreochromis niloticus)养殖场循环水养殖系统的脱氮池中分离到一株具有高效脱氮特性的菌株(编号DZYC02),分别以葡萄糖、蔗糖、可溶性淀粉、丁二酸钠、乙酸钠、柠檬酸钠为碳源,研究了碳源种类对菌株DZYC02脱氨氮效果的影响;同时以蔗糖为碳源、NH4Cl为氮源,研究了不同碳氮比、初始pH及盐度对该菌株脱氮效果的影响。结果显示:菌株DZYC02在以柠檬酸钠为碳源、C∶N≥15、pH 5~7、盐度0~15的条件下具有良好的脱氮效果,24 h内对浓度为20 mg/L的NH+4的去除率达100%,48 h内对浓度为20 mg/L的NO-2去除率高达100%;将该菌采用浸泡方式感染斑马鱼(Danio rerio)进行生物安全试验,结果显示菌株DZYC02对斑马鱼表现出较好的安全特性。分别用Biolog细菌鉴定方法和16S rDNA序列分析比对法对该菌进行鉴定,结果显示菌株DZYC02为一株肺炎克雷伯氏菌(Klebsiella pneumoniae)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号