首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life‐history strategies than their progenitors. Due to altered precipitation patterns from human‐induced global climate change, crop‐wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land‐management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross‐type populations (wild radish, Raphanus raphanistrum, and crop‐wild hybrid radish, R. raphanistrum × R. sativus) across a soil moisture gradient. In a seed‐burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over two years across cross types (crop‐wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop‐wild hybridisation rates and, potentially, annual variation in soil moisture conditions.  相似文献   

2.
Docks can be serious weeds of arable land and permanent grasslands where they can persist through well‐established root systems. A Rumex hybrid (R. patientia x R. tianschanicus; cv. OK‐2, Uteusha) has been planted as a forage and energy crop since 2001 in Czechia and has now become a new weed species. As its ecological characteristics are unknown, there is a need for improved knowledge for developing control measures and strategies. In 2010 and 2011, we performed a tube pot experiment to investigate above‐ground and below‐ground biomass growth dynamics and below‐ground biomass allocation of Rumex OK‐2. We compared the hybrid with Rumex crispus and Rumex obtusifolius during the vegetation season in the seeding year. Above‐ground and below‐ground biomass of Rumex species tended to increase from July to September. In the seeding year, flowering was recorded only for one plant of Rumex OK‐2 and 27.5% of R. obtusifolius plants, whereas R. crispus did not flower. The proportion of below‐ground biomass of Rumex species in the upper 30 cm was about 70–80%. The growth dynamics and allocation of below‐ground biomass of Rumex OK‐2 were more like R. crispus than to R. obtusifolius. These similarities indicate the potential of Rumex OK‐2 to become a troublesome weedy species, comparable with R. crispus.  相似文献   

3.
Rumex obtusifolius and Rumex crispus are problematic grassland weedy species, particularly under conditions of organic farming. They are avoided by cattle and horses, but they can be grazed by goats. The aim of this study was to investigate the effectiveness of continuous goat grazing of moderate intensity on R. obtusifolius and R. crispus control. In 2008, 40 seedlings of each species were transplanted into pasture that was grazed by goats (crossbreed Czech white × Czech brown) on the target sward height of 7–10 cm. The number of leaves, proportion of grazed leaves and mortality of plants were monitored over the following 4 years. The number of leaves per plant was higher for R. obtusifolius than for R. crispus. The maximal number of leaves per plant of R. obtusifolius and R. crispus was 10 and 5, respectively. The proportion of grazed leaves was generally higher for R. obtusifolius than for R. crispus and ranged from 10% to 80%. No fertile plant was recorded during the experiment, as goat grazing totally prevented the flowering of both species. The level of mortality of the plants at the start of the fourth grazing season was 70% and 87% for R. obtusifolius and R. crispus, respectively, and no plant survived the fourth grazing season. It was concluded that continuous goat grazing of a moderate intensity that is carried out over 4 years seems to be an effective method for the non‐chemical control of R. obtusifolius and R. crispus in grassland.  相似文献   

4.
Rumex species are important weeds in grasslands and on arable land. The Rumex hybrid (R. patienta × R. tianschanicus; cv. OK‐2, Uteusha) has been planted as a forage and energy crop since 2001 in the Czech Republic, but its ecological requirements and its potential to become a new weedy species have never been investigated. In 2010 and 2011, we performed a pot experiment to investigate the effect of none, one and two cuts per year on biomass production of Rumex OK‐2 and common broad‐leaved Rumex species (Rumex obtusifolius, R. crispus and R. alpinus). The higher cutting frequency can reduce the belowground biomass, but no effect on the aboveground biomass was detected. Flowering in the seeding year was recorded in only 50% of R. obtusifolius plants. Non‐flowering R. obtusifolius plants produced significantly more belowground biomass than flowering plants under no cutting or one cut treatments. The growth response of Rumex OK‐2 to different cutting treatments was very similar to R. crispus. These similarities indicate the weed potential of the hybrid to become a troublesome weedy species, similar to R. crispus.  相似文献   

5.
To understand alterations of oxalate and other metabolite levels induced by aluminium ion (Al3+) stress in Rumex plants, we measured the metabolites in R. obtusifolius using the capillary electrophoresis–mass spectrometry. Oxalate and its precursors (isocitrate and citrate) accumulated in leaves of R. obtusifolius after the Al3+ treatment at pH 4.5. Such increase was not observed under the acidic condition (pH 4.5) without Al3+. Principal component analysis showed organ‐specific changes in metabolite levels in R. obtusifolius by the Al3+ treatment. Highly positive correlations between oxalate and its precursors were revealed by hierarchical clustering and correlation analyses. An increase in oxalate content was consistently observed for three Rumex species (R. obtusifolius, R. crispus and R. japonicus) grown in the presence of Al3+. On the other hand, multivariate analyses revealed the differential alterations of other metabolite levels between R. obtusifolius and the other two Rumex species.  相似文献   

6.
The abundance of Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) has increased in coastal grasslands in Norway over recent decades, and their spread has coincided with increased precipitation in the region. Especially in water‐saturated, peaty soils, it appears from field observations that productive grasses cannot compete effectively with such rapidly growing rush plants. In autumn–winters of 2012–2013 and 2013–2014, a four‐factor, randomised block greenhouse experiment was performed to investigate the effect of different soil moisture regimes and organic matter contents on competition between these rush species and smooth meadow‐grass (Poa pratensis). The rush species were grown in monoculture and in competition with the meadow‐grass, using the equivalent of full and half the recommended seed rate for the latter. After about three months, above‐ and below‐ground dry matter was measured. J. effusus had more vigorous growth, producing on average 23–40% greater biomass in both fractions than J. conglomeratus. The competitive ability of both rush species declined with decreasing soil moisture; at the lowest levels of soil moisture, growth reductions were up to 93% in J. conglomeratus and 74% in J. effusus. Increasing water level in peat–sand mixture decreased competivitiveness of meadow‐grass, while pure peat, when moist, completely impeded its below‐ground development. These results show that control of rush plants through management may only be achieved if basic soil limitations have been resolved.  相似文献   

7.
Centaurea solstitialis (yellow starthistle) has invaded rangelands and natural areas in the western USA. There is evidence that mowing is a more effective method of reducing growth and seed production, compared with the well‐established and distributed bioagents. To test this hypothesis we measured C. solstitialis's growth and reproduction following two treatments (late spring and early summer bud/capitula destruction and shoot mowing) and measured C. solstitialis's growth and reproduction. We measured changes in soil moisture content to test the hypothesis that these manipulations differentially affect water usage by the invasive plant. Mowing produced shorter plants that weighed less. Bud damaged plants were not statistically different from untreated controls. The number of developed capitula was reduced 67% by mowing but was unaffected by bud damage. Mowed plants redistributed resources from root to flower production. Both treatments reduced mean capitulum diameter. This resulted in reductions of 76% and 21% in estimated seed number for mowed and bud damaged plants respectively. Root abundance decreased and root life‐span was reduced by both treatments. Soil moisture depletion was greatest from mid‐May to mid‐July (from 21% to 9%) and occurred after maximum root abundance. Mowing resulted in a delay in soil moisture depletion compared with the bud damaged plants or the untreated controls. Bud/capitula damage did not affect C. solstitialis's requirement for soil water. Overall, this study supported the hypothesis that mowing reduced C. solstitialis growth and reproduction more than bud damage alone. This information will aid managers in selecting a strategy for managing C. solstitialis in a particular habitat.  相似文献   

8.
Effect of air temperature, rain and drought on hot water weed control   总被引:1,自引:1,他引:1  
The influence of rain and drought before, and air temperature during, weed control with hot water was studied in laboratory experiments on the test weed Sinapis alba (white mustard). The plants were grown in a greenhouse and treated outdoors. There was no difference in weed control effect when S. alba plants at the four‐leaf stage were treated at the air temperatures 7°C and 18°C. The effective energy dose for a 90% fresh weight reduction was 465 kJ m?2 for both air temperatures. Weed control of S. alba at the four‐ to six‐leaf stage in rainfall above the rainwater run‐off level increased the required effective energy dose by 20% (i.e. 120 kJ m?2) compared with dry plants. A short period of drought just before treatment on S. alba at the two‐ to four‐leaf stage increased the plant fresh weight reduction, which was 22% at low energy dose (190 kJ m?2) and 44% at high energy dose (360 kJ m?2). Hot water weed control should thus be carried out when the plants are drought stressed and avoided when the plants are wet. The air temperature seems to be of little importance in the range 7–18°C.  相似文献   

9.
Broad-leaved dock (Rumex obtusifolius L.) is a troublesome weed that predominantly grows in pastures and grassland. We hypothesised that frequent defoliation of Rumex will, over time, result in a reduction in root weight and leaf area, to the point where the impact on grass production is negligible. In order to investigate this hypothesis, we conducted three experiments. The objective of the first experiment was to perform a preliminary test of the hypothesis, using potted plants growing in the controlled conditions of a glasshouse. This experiment showed a rapid decline in leaf growth in plants that were defoliated weekly. The objective of the second experiment was to test the hypothesis in realistic outdoor conditions while still being able to collect detailed plant growth information. This experiment confirmed the findings of the glasshouse experiment and provided evidence that leaf growth ceased as a result of a dwindling supply of carbohydrate reserves in the root. Defoliated plants did not exhibit increased mortality. Finally, the objective of the third experiment was to test the hypothesis in a commercial pasture where normal field operations, specifically grass harvesting (three times) and slurry injection (twice), were performed. The results of this experiment were consistent with the results of the other two experiments. We conclude that weekly defoliation, maintained for three or more months, is an effective method to control (reduce the impact on grass production), but not kill, R. obtusifolius in pasture.  相似文献   

10.
Non‐chemical weed control on pavements needs more frequently repeated treatments than the application of glyphosate and often uses large amounts of fuel. To obtain effective hot water control with minimum energy consumption, an in‐depth study of efficacy‐influencing factors was performed. Three dose–response pot experiments were conducted outdoors to investigate the impact of growth stage (39, 60 and 81 day old), water temperature (78, 88 and 98°C), time of the day (2, 7 and 12 h after sunrise) and treatment interval (2, 3, 4 and 6 week intervals) on hot water sensitivity of seven weed species that are hard to control on pavements. Responses to hot water were quantified by weed coverage and total dry biomass. In general, hot water sensitivity was highest for species with large planophile leaves and lowest for grasses with small erectophile leaves. Most species were twofold to sixfold more sensitive to water at 98°C than at 78 and 88°C, particularly when treated at early growth stages. Among treatment intervals, treating at 3‐week intervals was up to twofold more effective and energy efficient than treating at 6‐week intervals. Sensitivity was about twofold lower in the morning than in the afternoon. For effective control of weeds, while using less fuel, it is recommended to apply hot water in the late afternoon, to operate at high water temperature (98°C) and to treat plants as young as possible at 3‐week intervals.  相似文献   

11.
Fresh root fragments of Rumex crispus and Rumex obtusifolius, which initially contain 65–70% moisture, progressively lose moisture when desiccated under conditions matching summer weather in southeast England. The likelihood of shoot emergence and the time it took in glasshouse conditions were both affected by desiccation, with R. crispus the most affected up to 48 hr and R. obtusifolius slower to emerge after 48 hr. These effects converged after longer desiccation periods, and R. crispus entirely failed to emerge after 120 hr. The dry weight of emerged shoots was not significantly different between the species until they were desiccated for 96 hr, after which R. obtusifolius dry weight was significantly reduced. In outdoor trials, desiccation for 24 or 48 hr had a lesser effect on emergence in either species when fragments were planted at the soil surface or at up to a depth of 10 cm, compared to deeper plantings, but emergence was significantly lower in plantings at 15 or 20 cm. Emergence delays were not significantly different between the species until they were planted at 15 or 20 cm, when R. obtusifolius was slower to emerge than R. crispus, an effect exacerbated by increasing desiccation. Similar interactions of increasing soil depth and desiccation were found in reductions in dry weight, number of tillers and leaf area, with R. obtusifolius generally, but not exclusively, better able to withstand more extreme trial conditions. Our findings suggest that control of these highly troublesome weeds can be assisted by appropriate agricultural practices, notably exposing cut fragments to drying conditions followed by deep burial.  相似文献   

12.
Minimizing losses to pests and diseases is essential for producing sufficient food to feed the world's rapidly growing population. The necrotrophic fungus Botrytis cinerea triggers devastating pre‐ and post‐harvest yield losses in tomato (Solanum lycopersicum). Current control methods are based on the pre‐harvest use of fungicides, which are limited by strict legislation. This investigation tested whether induction of resistance by β‐aminobutyric acid (BABA) at different developmental stages provides an alternative strategy to protect post‐harvest tomato fruit against B. cinerea. Soil‐drenching plants with BABA once fruit had already formed had no impact on tomato susceptibility to B. cinerea. However, BABA application to seedlings significantly reduced post‐harvest infection of fruit. This resistance response was not associated with a yield reduction; however, there was a delay in fruit ripening. Untargeted metabolomics revealed differences between fruit from water‐ and BABA‐treated plants, demonstrating that BABA triggered a defence‐associated metabolomics profile that was long lasting. Targeted analysis of defence hormones suggested a role of abscisic acid (ABA) in the resistance phenotype. Post‐harvest application of ABA to the fruit of water‐treated plants induced susceptibility to B. cinerea. This phenotype was absent from the ABA‐exposed fruit of BABA‐treated plants, suggesting a complex role of ABA in BABA‐induced resistance. A final targeted metabolomic analysis detected trace residues of BABA accumulated in the red fruit. Overall, it was demonstrated that BABA induces post‐harvest resistance in tomato fruit against B. cinerea with no penalties in yield.  相似文献   

13.
The plant growth‐promoting fungus, Penicillium simplicissimum GP17‐2, was evaluated for its ability to induce resistance against Cucumber mosaic virus (CMV) in Arabidopsis thaliana and tobacco plants. Treatment with barley grain inoculum (BGI) of GP17‐2 significantly enhanced fresh weight, dry weight and leaf number of A. thaliana and tobacco plants 6 weeks after planting. Two weeks after CMV inoculation, all plants treated with BGI of GP17‐2 or its culture filtrate (CF) showed a significant reduction in disease severity compared with non‐treated control plants, which exhibited severe mosaic symptoms by the end of the experiment. The enzyme‐linked immunosorbent assay (ELISA) demonstrated that CMV accumulation was significantly reduced in plants treated with GP17‐2 or its CF relative to control plants. Based on RT‐PCR, plants treated with GP17‐2 (BGI or CF) also exhibited increased expression of regulatory and defence genes involved in the SA and JA/ET signalling pathways. These results suggested that multiple defence pathways in A. thaliana and tobacco were involved in GP17‐2‐mediated resistance to CMV, although neither the transgenic NahG line, nor the npr1, jar1 or ein3 mutants disrupted the response in A. thaliana. This is the first report to demonstrate the induction of systemic resistance against CMV by GP17‐2 or its CF.  相似文献   

14.
Hot water was dripped into the rhizosphere of Japanese pear trees (Pyrus serotina Rehd. grafted on P. betulifolia Bunge.) infested with the white root rot fungus Rosellinia necatrix Prillieux, to destroy the fungus. Isolates of R. necatrix from diseased roots of Japanese pear were vulnerable to water at temperatures above 35°C, and the fungus was eradicated from the colonized substrate when water at 35°C was provided for 3 days. The time required to eradicate R. necatrix decreased exponentially with increasing temperature. Japanese pear trees tolerated a temperature of 45°C without reduction in vigor. Field experiments demonstrated the practical use of hot water drip irrigation (HWD). HWD at 50°C completely destroyed white root rot mycelia on diseased roots, and many rootlets grew after the treatment. HWD at this temperature caused no injury to the trees. HWD of diseased orchard trees was assessed in Takamori and Iida in southern Nagano, Japan. The fungus recurred in two of four trees 28 months after treatment in Takamori and in two of ten trees 16 months after treatment in Iida. The new mycelia emerged on thick roots deep within the soil. Although there is a possibility of recurrence, HWD treatment is a practical control measure for white root rot.  相似文献   

15.
干旱区保护性耕作对土壤水分的影响研究   总被引:7,自引:1,他引:6  
为了研究保护性耕作对土壤水分的影响,选择翻耕地和免耕地两种土地耕作类型,分析不同耕作方式下土壤水分的时空变化规律。在保护性耕作实行的两年时间里,测定了土层不同深度土壤水分,结果表明:(1)在作物生长的整个生育期内土壤水分含量有随降雨量周期变化的趋势,无论是何种耕作方式,除生育期降雨外,播前底墒也是土壤供水的重要组成部分;(2)土壤贮水能力免耕地都是大于翻耕地的;0-80cm土壤水分的空间剖面自上而下分为两个层次:表层失水层(0-30cm)和中层贮水层(30-80cm)。(3)用SPSS统计软件进一步对土壤水分与土层深度的关系进行拟合,结果表明土壤水分与土层深度的关系具有极强的相关性,其关系方程为拟和三次抛物线相型。  相似文献   

16.
The effect of hot water treatment (HWT) to control peach brown rot was investigated. Peaches were dipped in water at 60°C for 60 s and artificially inoculated with Monilinia fructicola conidia. HWT failed to control brown rot if applied before inoculation and microscopic observations revealed a stimulatory effect on germ tube elongation of M. fructicola conidia placed immediately after HWT on the fruit surface, compared to the control. The influence of fruit volatile emission due to HWT was performed on the pathogen conidia exposed to the headspace surrounding peaches. The results showed an increase of M. fructicola conidial germination ranging from 33 to 64% for cultivars Lucie Tardibelle and Red Haven heat‐treated peaches, respectively, compared to the control. The volatile blend emitted from heat‐treated fruit was analysed by solid‐phase microextraction/gas chromatography‐mass spectrometry (SPME/GC‐MS) and proton transfer reaction‐time of flight‐mass spectrometry (PTR‐ToF‐MS). Fifty compounds were detected by SPME/GC‐MS in volatile blends of cv. Lucie Tardibelle peaches and significant differences in volatile emission were observed among heated and control fruit. Using PTR‐ToF‐MS analysis, acetaldehyde and ethanol were detected at levels 15‐ and 28‐fold higher in heated fruit compared to unheated ones, respectively. In vitro assays confirmed the stimulatory effect (60 and 15%) of acetaldehyde (0·6 μL L?1) and ethanol (0·2 μL L?1) on M. fructicola conidial germination and mycelial growth, respectively. The results showed that volatile organic compounds (VOCs) emitted from heat‐treated peaches could stimulate M. fructicola conidial germination, increasing brown rot incidence in treated peaches when the inoculation occurs immediately after HWT.  相似文献   

17.
Hoagland's solution (HS), a defined nutrient supplement for plants, has been previously reported to stimulate zoospore release from resting spores of the potato pathogen Spongospora subterranea f. sp. subterranea. This study obtained direct empirical evidence for an increase in zoospore release with HS treatment, and identified Fe‐EDTA as the stimulant component of HS. Stimulation of resting spores by HS and Fe‐EDTA resulted in greater and earlier zoospore release compared to a distilled water control, and in the presence of a susceptible tomato host plant resulted in enhanced root infection. Given the labile nature of S. subterranea zoospores, it was postulated that stimulation of premature release of zoospores from the dormant resting spores in absence of susceptible hosts could reduce soil inoculum levels. In two glasshouse trials in the absence of host plants, both Fe‐EDTA and HS soil treatments reduced S. subterranea soil inoculum levels, providing proof of concept for the ‘germinate to exterminate’ approach to inoculum management.  相似文献   

18.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

19.

Clavibacter michiganensis subsp. michiganensis is a very important pathogen that causes bacterial wilt of tomato (BWT). Biological control of plant diseases is a critical tool for protecting the environment from chemical pollution. Twenty-five isolates of the genus Trichoderma were obtained from a healthy tomato root. Of the 25 isolates, KABOFT4 showed highly antagonistic activity that controlled the growth of C. michiganensis subsp. michiganensis (Cmm7) under in vitro conditions. The 5.8S ribosomal RNA gene and internal transcribed spacer identified the isolate as Trichoderma harzianum KABOFT4. The effect of this isolate as a soil drench and/or foliar application on bacterial wilt under greenhouse conditions was studied. The germination percentage of tomato seed treated with KABOFT4 increased by 36.7% compared to infected seed treated with only the pathogen Cmm7. Under greenhouse conditions, tomato seedlings treated with KABOFT4 as a soil drench, foliar and soil treatment, and foliar treatment had a 61.3, 26.7, and 40% reduced disease severity relative to the infected control, respectively. All treatments had a positive effect on tomato plants that presented as greater vegetative growth and accumulation of dry matter. The best fresh and dry weight was recorded when plants were treated with KABOFT4 as a soil and foliar application. Tomato plants treated with KABOFT4 also had increased total phenol and flavonoid contents in inoculated and non-inoculated plants compared to untreated plants. Under greenhouse conditions, T. harzianum strains can be used as an environmentally friendly way to manage the most economically important tomato disease. The results showed that a native endophytic strain of T. harzianum was a potent biocontrol agent against C. michiganensis subsp. michiganensis. Application of this strain to tomatoes in the greenhouse resulted in a decrease in disease severity and an increase in crop biomass.

  相似文献   

20.
A.M. BLAIR 《Weed Research》1985,25(2):141-149
Alopecurus myosuroides Huds. (blackgrass) in sandy loam soil in pots was treated at the three-leaf stage with formulated isoproturon. Damage to plants resulted mainly from herbicide entry via the soil. When the soil moisture levels were maintained close to 50, 100 and 150% of field capacity (FC) throughout the experiment damage increased with the amount of water in the soil. After spraying plants raised at field capacity, change to 150 or 50% FC resulted in more and less damage respectively. Water applied to the soil surface compared with sub-irrigation caused more damage. A delay of up to 21 days between spraying plants in soil at field capacity and surface watering did not reduce damage provided the time interval between the onset of surface watering and assessment remained constant. A delay of 7 days between spraying isoproturon onto plants in dry soil (50% FC) and increasing the moisture to field capacity by surface watering decreased the damage to A. myosuroides. These results are discussed with reference to the soil moisture distribution in soil columns and rainfall patterns under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号