首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mulberry twigs were inserted into the soil as bait to detect Rosellinia necatrix at an early stage of tree infection in the orchard. R. necatrix was frequently trapped on twigs near the trunk base at soil depths of 6–20 cm within 10–20 days in May–July, suggesting that the incubation period was dependent on soil temperature. Subsequently, we inserted twig in the soil around healthy-looking trees in naturally infested orchards. R. necatrix was trapped from 80.0% of Japanese pear and 75.0% of apple trees that later proved to be infected. This bait twig method facilitated quicker diagnosis of white root rot on Japanese pear and apple at early stages of infection and can be used to detect recurrence of the fungus after fungicide treatment.  相似文献   

2.
We developed real-time PCR assays using TaqMan probes to detect and quantify Rosellinia necatrix, the causal agent of white root rot in many plant species. Two sets of PCR primers and TaqMan probe indicated that their detection limits could be as low as 1 fg of template DNA. Using the real-time PCR assays with the TaqMan probes, we were able to quantify R. necatrix DNA in naturally diseased roots of Japanese pear and in artificially infested soil samples. Although the new assays were inadequate for use with naturally infested soil samples, nested PCR procedures improved the detectability of the new assays.  相似文献   

3.
In early August 2010, lacquer trees (Toxicodendron vernicifluum) severely damaged by a root rot disease were found on plantations in Iwate, Japan. The causal agent was a fungus identified as Rosellinia necatrix, based on morphology and the sequence of the ribosomal DNA internal transcribed spacer region. The fungus was clearly pathogenic on T. vernicifluum root plantings. This report is the first of white root rot on T. vernicifluum.  相似文献   

4.
The soilborne pathogen Rosellinia necatrix causes white root rot, a serious disease of various trees, and is extremely difficult to control. In this study, using one-dimensional electrophoresis coupled with nanoliquid chromatography-electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-Q-TOF-MS/MS), we identified 696 proteins from R. necatrix mycelium (KACC 40445) grown in liquid culture. In addition, 573 proteins were assigned to at least one gene ontology term including 26 functional groups. Most were related to catalytic activity in the molecular function category. This proteomic data set advances understanding of R. necatrix biology and will inform further investigations to manage white root rot using novel strategies.  相似文献   

5.
A severe rot was found on the stems and roots of scarlet runner bean (Phaseolus coccineus) in Ibaraki Prefecture (Japan) in August 2004. The causal fungus was identified as Pythium myriotylum. We propose the name of stem and root rot of scarlet runner bean (“Kuki-negusare-byo” in Japanese) for this new disease.  相似文献   

6.
Disease on fruit trees in Bulgaria caused by Phytopthora cactorum and P. citrophthora was found in the period 1998–1999. Leaves of some trees become reddish during July, and later in the season fall off. Infected trees die during the same season, or the next season. Observations on symptom development and spread of Phytophthora root and crown rot of fruit trees was undertaken from 1999 to 2009. Disease incidence is between 2% and 14% in some gardens and nurseries. The disease was registered in the regions of Plovdiv, Kjustendil, Sliven, Yambol, Karnobat, Bourgas and Svishtov. Samples from infected plant tissues were taken and isolations were done on selective PARP media, or by applying a baiting bioassay. Based on morphological and cultural characteristics and temperature requirements the following Phytophthora species have been identified: Phytophthora cactorum, P. citrophthora, P. drechsleri, P. cryptogea, hybrid and Pythium. Pathogenicity of the isolates was tested on green apple fruits or one-year-old apple rootstocks. Laboratory studies of the effect of temperature on mycelia growth showed that most isolates can grow from 5° up to 30°C, with an optimum from 18° to 25°C. Only three strains grew at 35–36°C, two developed slowly, one grew well. The optimal pH for mycelia development was tested. Aiming at control of disease, in vivo pot trials have been carried out for studying resistance of rootstocks to P. cactorum. At the end of the growing season a good level of resistance has been shown in the rootstocks M29C, Gizela 6, and MAXMA 14.  相似文献   

7.
Wasabi (Wasabia japonica) is grown for its highly-valued rhizome which is used as a condiment in Japanese food. Symptoms of vascular blackening in the rhizome were first observed in 2005 in plants grown in British Columbia, Canada. Microscopic observations and microbial isolation from infected tissues revealed that most of the xylem tracheid cells were blackened and bacteria were consistently associated with symptomatic plants. The bacterium most frequently recovered was identified as Pectobacterium carotovorum subsp. carotovorum (Pcc) using BioLog™ and sequencing of a specific ~510 bp IGS region. Pathogen-free plants obtained using meristem-tip micropropagation were inoculated with a wasabi isolate of Pcc. Vascular blackening symptoms developed in the rhizome after 8 weeks when the rhizome was first wounded by stabbing or cutting, or if the roots were pre-inoculated with Pythium species isolated from rhizome epidermal tissues, followed by inoculation with Pcc at 1 × 108 cells ml−1. Xylem tracheid cells were blackened and Pcc was reisolated from all diseased tissues. The highest frequency of rhizome vascular blackening occurred at 22°C and 27°C and these tissues occasionally succumbed to soft rot at higher temperatures, but not when inoculated tissues were incubated at 10°C. The rooting medium used by growers for vegetative propagation of wasabi was shown to contain Pcc but the pathogen was not recovered from the irrigation water. Entry of Pcc through wounds on wasabi rhizomes and the host tissue response result in symptoms of vascular blackening.  相似文献   

8.
Rosellinia compacta, described recently, resembles R. necatrix and also causes white root rot. Here a species-specific PCR was developed for R. compacta, and the two R. necatrix-specific primer sets already available were validated in terms of species specificity. PCRs using the primer sets for R. necatrix amplified specific products exclusively from R. necatrix isolates. The R. compacta-specific primer set exclusively detected R. compacta, which appears to be a rare but widely distributed species. We conclude that R. necatrix is the major cause of the disease in Japan but that the involvement of R. compacta should be studied further.  相似文献   

9.
Pythium and Phytophthora species were isolated from kalanchoe plants with root and stem rots. Phytophthora isolates were identified as Phytophthora nicotianae on the basis of morphological characteristics and restriction fragment length polymorphism (RFLP) analysis of the rDNA-internal transcribed spacer regions. Similarly, the Pythium isolates were identified as Pythium myriotylum and Pythium helicoides. In pathogenicity tests, isolates of the three species caused root and stem rots. Disease severity caused by the Pythium spp. and Ph. nicotianae was the greatest at 35°–40°C and 30°–40°C, respectively. Ph. nicotianae induced stem rot at two different relative humidities (60% and >95%) at 30°C. P. myriotylum and P. helicoides caused root and stem rots at high humidity (>95%), but only root rot at low humidity (60%).  相似文献   

10.
Foliar wilt as well as crown and root rot with sclerotia formation has affected potted liver leaf (Hepatica nobilis var. japonica f. magna) in Ojiya, Niigata Prefecture, Japan, since 2006. Apothecia developed from the sclerotia on soil surface of pots with the diseased plants in March. A fungus forming the apothecia was identified as Dumontinia tuberosa (Sclerotiniaceae) based on its morphology and demonstrated to cause the disease. We coined the name “Dumontinia root rot (Dumontinia-negusare-byo in Japanese) of liver leaf” for the new disease.  相似文献   

11.
Seven different strains of Trichoderma isolated from avocado roots showed antagonism to Rosellinia necatrix, which is the causal agent of white root rot. We studied these Trichoderma strains on the basis of the secondary metabolites produced in liquid culture. Five different compounds, namely, 6PP (6-pentyl-α-pyrone), Harzianolide (4-hexa-2,4-dienyl-3-(2-hydroxy-propyl)-5H-furan-2-one), T39butenolide (4-hexa-2,4-dienyl-3-(2-oxo-propyl)-5H-furan-2-one), Dehydroharzianolide (4-hexa-2,4-dienyl-3-propenyl-5H-furan-2-one) and Cerinolactone [(3-hydroxy-5-(6-isopropyl-3-methylene-3, 4, 4a, 5, 6, 7, 8, 8a-octahydronaphthalen-2-yl) dihydrofuran-2-one); a recently discovered novel metabolite], were obtained. In vitro studies of the effects of these compounds on different R. necatrix strains isolated from avocado roots and with different virulence demonstrated that 6PP had the strongest effect even at a low concentration. Although unstable, Cerinolactone and T39butenolide also had large effects on R. necatrix, mainly at a concentration of 200 μg. Harzianolide and Dehydroharzianolide exhibited the lowest effects on the pathogen. In vivo studies of Trichoderma metabolites on Lupinus luteus plants demonstrated the delay of white root rot epidemic through preventive application of 6PP or Harzianolide to seeds or plantlets by immersion in solutions of these metabolites at 1 mg l?1 (minimum effective dosage). In contrast, Cerinolactone only was effective at 10 mg l?1 when applied by plantlet immersion. Thus, this study reports the role that these metabolites could play for controlling avocado white root rot caused by R. necatrix.  相似文献   

12.
Strawberry pear (pitahaya, pitaya) [Hylocereus undatus (Haw.) Britt. and Rose] postharvest fruit rot was found at an agricultural products store in Itoman city, Okinawa Prefecture in 2006. The symptoms included depressed, water-soaked lesions with olive to black powdery spots coalescing into a soft rot. The causal fungus was identified as Bipolaris cactivora (Petrak) Alcorn. This is the first report of strawberry pear fruit rot caused by B. cactivora.  相似文献   

13.
Although the causal agent of black root rot of Cucurbitaceae in Japan has been proposed as Phomopsis sclerotioides, the species identification of the pathogen has remained inconclusive because of a lack of spore formation. We confirmed that a Japanese isolate of Phomopsis sp. obtained from a diseased pumpkin root produced pycnidia containing α spores in sterilized bean pods. In phylogenetic analyses of rDNA-ITS regions, nine Japanese Phomopsis sp. isolates from melon, watermelon grafted onto bottle gourd, and pumpkin diagnosed with black root rot, formed a single clade with P. sclerotioides standard isolates. We identified the causal agent of the black root rot of melon, pumpkin, bottle gourd, and watermelon in Japan as P. sclerotioides and propose the Japanese name “Phomopsis-negusare-byo” for the disease. Patterns of random amplified polymorphic DNA (RAPD) of these Japanese isolates were also similar to those of P. sclerotioides, thus supporting the species identification. However, mycelial incompatibilities were found for many combinations among these P. sclerotioides isolates, suggesting some genotypic variations of this fungus in Japan at a level that the RAPD analyses cannot discriminate. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB201430 to AB201444  相似文献   

14.
Rotting of roots and stem bases and wilting of entire plants were found on a gentianaceous flowering plant, prairie gentian (Eustoma grandiflorum), grown in Kagawa Prefecture in the southwest region of Japan in April 2001. A mitosporic fungus, isolated repeatedly from the diseased plants, was identified as a species belonging to the clade 3 of Fusarium solani species complex based on the morphology and the sequence of the translation elongation factor gene. It was demonstrated to cause the disease by inoculating potted plants and reisolating the fungus from the diseased plants. We propose the name “Fusarium root rot of prairie gentian” for this disease.  相似文献   

15.
Miniature roses growing in an ebb-and-flow watering system developed dieback during the summer growing season of 1996 in Gifu Prefecture. The main diagnostic symptoms were chlorosis of leaf followed by blight, and a brown, water-soaked root rot followed by dieback. Pythium isolates were recovered from the rotted root. The isolates form proliferous ellipsoidal papillate sporangia, spherical smooth oogonia, elongate antheridia, and aplerotic oospores. The optimum temperature for hyphal growth was 35°C with a growth rate of 34 mm/24 hr. Optimum temperature of zoospore formation (25-30°C) was lower than that of mycelial growth, and zoospores were produced even at 10°C. The isolates were identified as P. helicoides on the basis of these characteristics. In pathogenicity tests disease severity was highest at the highest tested temperature (35°C) at which the disease naturally occurred in summer. Four days after inoculation, the leaves turned yellow and the roots had a water-soaked rot, followed by leaf blight and root dieback after 7 days. The disease transmission test showed that diseased plants were found throughout the bench after 10 days. Received 4 July 2001/ Accepted in revised form 10 October 2001  相似文献   

16.
On the basis of mycelial compatibility, the population structure of Valsa ceratosperma, the causal fungus of Valsa canker on broadleaf trees, was investigated in apple and pear orchards in Japan. Field strains of V. ceratosperma from a single canker on trunks or scaffold limbs belonged to different mycelial compatibility groups. Thus, the population structure of this fungus was complex in most orchards. Because mycelia of strains originating from different conidia from the same pycnidium were compatible, infection by this fungus is thought to be ascospores.  相似文献   

17.
Dematophora necatrix, the causal agent of the white root rot disease in plants, produced large amounts of cellulase (Cx) and very small amounts of polygalacturonase (PG). Both tannins (100 mg/l) and phenols (200 mg/l) extracted from roots of plants showing resistance to the disease decreased Cx productionin vitro. PG production was affected only by tannin extracts. Exposure of the fungus for 2 days to the tannin (100 mg/l) but not to the phenol (200 mg/l) extracts decreased the subsequent rate of fungal growth in an agar medium free of these compounds.  相似文献   

18.
In 1982, an anamorphic fungus in the genus Monilia was first isolated as the causal agent of brown rot disease of Japanese apricot or mume (Prunus mume) in Oita Prefecture, Kyushu, Japan. Inoculation of flowers, shoots, and fruit of P. mume with the fungus reproduced brown rot disease symptoms similar to those found in nature. The fungus somewhat resembled the colony appearance of Monilinia (anamorph Monilia) laxa, the apricot brown rot fungus, on PSA plates, but it differed from the latter and the other two brown rot fungi, M. fructigena and M. fructicola, in terms of growth rate, temperature optima for mycelial growth and sporulation, morphology and germination pattern of conidia, nuclear number in the conidium, and nucleotide sequences in the ITS region of ribosomal DNA. It is newly described as Monilia mumecola Y. Harada, Y. Sasaki & T. Sano. A key to anamorphic states of four brown rot fungi of fruit trees is provided.  相似文献   

19.
To investigate the susceptibility of hairy root lines of Brassica species to Plasmodiophora brassicae, hairy roots were induced in a number of Brassica species with Agrobacterium rhizogenes. Turnip hairy root was highly susceptible to P. brassicae; infection rates were high and large galls formed. In contrast, the rates of root hair infection and gall formation on intact Brassica plants did not differ significantly from the control. To induce resting spore formation, turnip hairy roots were incubated at 15°, 20°, or 25°C after 3 weeks of incubation at 25°C. The number and fresh mass of the galls per hairy root were higher and formation of resting spores was greatest after a 7-week incubation at 20°C. To subculture P. brassicae using turnip hairy root, turnip hairy roots were reinoculated with resting spores and gall with resting spores then formed on the hairy roots. In this way, P. brassicae using hairy roots could be subcultured in vitro two or three times on three single-spore isolates of P. brassicae. This is the first report of in vitro subculture of P. brassicae using hairy root.  相似文献   

20.
Gnomonia fragariae has been occasionally listed among the fungi associated with diseased strawberry plants. However its pathogenicity has not been established. During the investigation on strawberry decline in Latvia and Sweden, a fungus was repeatedly recovered from discoloured root and crown tissues of severely stunted plants. Attempts to induce sporulation of the isolates grown on several agar media resulted in the formation of mature ascomata only on potato carrot agar and oatmeal agar. On morphological grounds and comparisons with reference herbarium specimens these isolates were identified as Gnomonia fragariae. The pathogenicity of the fungus was evaluated initially in the detached leaf assay and subsequently in three bioassays on strawberry plants. All the bioassays showed that G. fragariae was pathogenic on strawberry and capable of causing severe root rot and petiole blight. The symptoms that developed in the greenhouse experiments closely resembled those observed in the fields. The fungus did not cause rapid plant death but growth and development of inoculated strawberry plants was severely affected. To our knowledge this is the first time when pathogenicity of G. fragariae as a root rot pathogen has been clearly established. Our study shows that G. fragariae is one of the serious pathogens involved in the root rot complex of strawberry in Latvia and Sweden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号