首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the effects of cold stratification on the release of physiological dormancy in seeds have been studied extensively, knowledge of the role of soil moisture content on seed dormancy release during cold stratification is limited. Our study determined seed dormancy characteristics and the effect of soil moisture content on seed dormancy breakage during cold stratification in the five common weed species Amaranthus retroflexus, Chenopodium album, Chenopodium hybridum, Plantago lanceolata and Setaria glauca. Seeds of all five species were dormant at the time of harvest and their germination response to light and temperature varied. Soil moisture content had a significant effect on seed dormancy release of all species except P. lanceolata. Germination percentage of A. retroflexus, C. album, C. hybridum increased and then decreased as soil moisture content increased, regardless of germination test temperature. The optimal soil moisture content and seed moisture content for dormancy breakage of A. retroflexus, C. album, C. hybridum were 8%, 12%, 8% and 22.0%, 37.7%, 25.7% respectively. Dry storage (after‐ripening) significantly increased germination of S. glauca. Moreover, increasing soil moisture content first slowed and then increased dormancy breakage in S. glauca. These results suggest that data on soil moisture content should be incorporated into models that predict weed seed dormancy breakage and timing of seedling emergence as well as those for weed management.  相似文献   

2.
Seed dormancy contributes to species persistence in unpredictable environments and is a key process to be taken into account in weed dynamics models. As the level of seed dormancy, photosensitivity and the dates of dormancy induction and release are difficult to measure, our objective was to relate weed seed dormancy with morphological, chemical or physiological seed traits and with expert knowledge. Dormancy of four species was studied experimentally during a 2‐year seed burial experiment. Experiments were supplemented with data from the literature to increase the number of species analysed, resulting in a data set of 29 species. Proportions of non–dormant seeds were higher for elongated than spherical seeds, even when accounting for phylogenetic relatedness between species. Elongated seeds, which tend to remain on the soil surface in undisturbed habitats, may have been selected for lack of dormancy and immediate germination to limit mortality due to predation. Dormancy increased with seed coat thickness, which can act as a chemical and physical barrier to germination, while no relation was found with seed lipid or protein content. No correlation was found between photosensitivity parameters and any of the species traits analysed. Variations in dormancy dates (induction and release) were highly correlated with average field emergence season estimated from expert knowledge. The observed correlations suggest that the level of dormancy results both from direct and from indirect effects of traits being involved in trade‐offs together with seed mortality.  相似文献   

3.
Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life‐history strategies than their progenitors. Due to altered precipitation patterns from human‐induced global climate change, crop‐wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land‐management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross‐type populations (wild radish, Raphanus raphanistrum, and crop‐wild hybrid radish, R. raphanistrum × R. sativus) across a soil moisture gradient. In a seed‐burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over two years across cross types (crop‐wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop‐wild hybridisation rates and, potentially, annual variation in soil moisture conditions.  相似文献   

4.
Urochloa panicoides is an annual weed of summer crops. In Argentina, in subhumid areas with monsoon rainfall, it germinates and establishes in a single flush. To (i) identify the environmental factors that modify its seed dormancy level and germination and (ii) quantify the parameters describing the thermal behaviour of the germination and emergence dynamics of this weed under non‐limiting water conditions, we established a set of germination experiments performed (i) under controlled conditions using seeds after ripened for 3 or 6 months in different thermal and hydric conditions and (ii) under field conditions, where the soil temperature was modified by applying different shading levels. Seed dormancy level remained high with 3 months after ripening in all treatments. After 6 months, seeds stored at 4°C in dry conditions did not germinate at any temperature, while seeds stored at 25°C in dry conditions and in situ germinated c. 20% and 60% respectively. Germination percentage was higher in seeds harvested before their natural dispersal. The base, optimum and maximum temperatures for seed germination were 6, 35 and 45°C respectively. Shading reduced the number of emerged seedlings, possibly by reducing the soil thermal amplitude. The results explained the dormancy‐breaking mechanism of U. panicoides that allows a high germination rate in the field when rainfall occurs.  相似文献   

5.
Dormant seeds of oilseed rape (OSR) can persist in the soil and cause OSR volunteers in subsequent crops. Several approaches were tested in the laboratory and in the field to determine whether dormancy induction and seed persistence can be reduced by using dormancy‐breaking exogenous compounds. In a laboratory experiment, OSR seeds were coated with KNO3, micronutrients, or gibberellic acid (GA) prior to a secondary dormancy test. In a field experiment, seeds were coated in a manner analogous to the laboratory experiment, and then buried 10 cm deep in the soil for 2.5 months. In a practical demonstration, OSR plants were sprayed with either urea ammonium nitrate (UAN) or a commercial product containing GA prior to seed maturity. Seed coating (laboratory and field experiments) reduced secondary dormancy and seed persistence in the field by up to 99%. The efficiency of the treatments for mitigating secondary dormancy (laboratory and field experiments) in decreasing order was GA > micronutrients > KNO3 > control. With pre‐maturity spraying (practical demonstration), UAN reduced primary dormancy by up to 77% and the development of secondary dormancy by up to 38%; GA had no effect. Dormancy and seed persistence of OSR seeds may be reduced by a pre‐maturity UAN treatment of OSR mother plants, or by applying appropriate exogenous compounds to OSR seeds.  相似文献   

6.
Seedbank density is an important aspect that determines the amount of damage that the parasitic weed, purple witchweed (Striga hermonthica; hereafter, called “Striga”), causes on its crop hosts. The seedbank depletion of Striga was measured in Mali and Niger during the 2004 rainy season under the host crops, pearl millet and sorghum, the non‐host crops, cowpea and sesame, the intercrops of pearl millet or sorghum with cowpea or sesame, and fallow with or without weeding. Two methods were used and compared; namely, a seed bag method and a soil‐sampling method. The fate of the seeds was assessed by a seed press test. Seed germination, as determined by the presence of empty seed coats, contributed most to the seedbank depletion of Striga under a variety of crop covers and fallow. The highest seedbank depletion was found under the monocultures of the host crops. The intercrops of the host and non‐host crops caused less seedbank depletion, followed by the monocultures of the non‐host crops, fallow, and bare soil. The seed bag method and the soil‐sampling method yielded similar percentages of seedbank depletion, while the former allowed for distinguishing between the germinated and diseased seeds. The results suggest that, although all the tested crop species can cause the seed germination and seedbank depletion of Striga, management by using host cereal crops causes the highest amount of germination and has the highest potential to deplete the soil seed bank, provided that seed production is prevented.  相似文献   

7.
Secondary seed dormancy has been linked to seedbank persistence of volunteer oilseed rape (Brassica napus) in western Canada. It has been suggested that there is a genetic component to secondary seed dormancy expression in oilseed rape, but little is known of its importance in relation to non‐genetic factors. In a series of experiments we investigated the relative importance of genotype, seed size, time of windrowing and pre‐ and post‐harvest environment on the expression of secondary seed dormancy. We found that genotype contributed between 44 and 82% to the total variation in secondary seed dormancy. A broad range in secondary seed dormancy expression was observed among 16 genotypes examined. Nevertheless, three‐quarters of the genotypes investigated exhibited relatively high potential for the expression of secondary seed dormancy (back‐transformed mean 71% dormant seeds). Seed size contributed 21% to the total variation, while the influence of seed maturity (harvest regime) on secondary seed dormancy expression was negligible. Despite diverging environmental conditions during the four growing seasons spanning these experiments, the influence of pre‐harvest environment on seed dormancy expression was relatively small and ranged from 0.1% to 4.5%. Secondary seed dormancy potential decreased over time during seed storage. This decrease was greatest when seeds were stored at ambient temperatures and least when seeds were stored at ?70°C.  相似文献   

8.
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losses from weed seedbanks remain poorly understood. We conducted an experiment in Iowa, USA, to determine the fates of Setaria faberi and Abutilon theophrasti seeds in 2‐, 3‐ and 4‐year crop rotation systems when seed additions to the soil seedbank were restricted to a single pulse at the initiation of the study. Over the course of the experiment, seedlings were removed as they emerged and prevented from producing new seeds. After 41 months, seed population densities dropped >85% for S. faberi and >65% for A. theophrasti, but differences between rotation systems in the magnitude of seedbank reductions were not detected. Most of the reductions in seedbank densities took place from autumn through early spring in the first 5 months following seed deposition, before seedling emergence occurred, suggesting that seed predation and/or seed decay was important. For S. faberi, total cumulative seedling emergence and total seed mortality did not differ between rotation systems. In contrast, for A. theophrasti, seedling emergence was 71% lower and seed mortality was 83% greater in the 3‐ and 4‐year rotation systems than in the 2‐year system. Results of this study indicate that for certain weed species, such as A. theophrasti, crop rotation systems can strongly affect life‐history processes associated with soil seedbanks.  相似文献   

9.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

10.
H OM  S KUMAR  & S D DHIMAN 《Weed Research》2005,45(2):140-148
Seed placement, soil temperature and soil moisture content influenced the process of after-ripening in Phalaris minor seeds. Seeds of P. minor collected from the soil just after wheat harvesting exhibited higher germination than seeds from P. minor threshed directly. There was a pronounced impact of periodic inhabitation of seed into the soil on germination after its dispersal. Germination was strongly inhibited when the seed was kept in soil at more than field capacity (FC) or in water. Maximum germination of seed incubated in soil at FC occurred at 30°C while a temperature of 40°C favoured after-ripening of seed when mixed with dry soil or kept dry without any medium. Release from conditional dormancy was quicker in the seed retrieved from the soil kept at 20°C than at 10°C. Seed release from conditional dormancy and germination increased with a rise in temperature from 30 to 40°C when the seed was retrieved from incubation in soil at FC for 70 days. The seed kept immersed in water was least responsive to a rise in temperature. Seed recovered from dry soil, or kept without any medium, responded quickly at both temperatures. Light enhanced the germination of Phalaris minor seed. The seedbank subjected to rice (Oryza sativa) field management conditions lost vigour in comparison with the seed stored in laboratory. There was significant variability in seed viability when exposed to differential water management conditions in rice.  相似文献   

11.
Physiological dormancy in weed species has significant implications for weed management, as viable seeds may persist in soil seedbanks for many years. The major stimulatory compound in smoke, karrikinolide (KAR1), promotes germination in a range of physiologically dormant weed species allowing targeted eradication methods to be employed. Control of Chrysanthemoides monilifera ssp. monilifera (boneseed), a Weed of National Significance in Australia, may benefit from adopting such an approach. In this study, we hypothesised that seeds of C. monilifera ssp. monilifera exhibit physiological dormancy, germinate more rapidly as dormancy is alleviated, show fluctuations in sensitivity to KAR1 and form a persistent soil seedbank. Seeds responded to 1 μM KAR1 (40–60% germination) even during months (i.e. March, April, July, August) when seeds were observed to be more deeply dormant (control germination: 7–20%). Seeds germinated readily over a range of cooler temperatures (i.e. 10, 15, 20, 20/10 and 25/15°C) and were responsive to KAR2 (~50% germination) as well. Eradication efforts for C. monilifera ssp. monilifera may benefit from use of karrikins to achieve synchronised germination from soil seedbanks, even at times of the year when C. monilifera ssp. monilifera seeds would be less likely to germinate, allowing more rapid depletion of the soil seedbank and targeted control of young plants.  相似文献   

12.
Galinsoga quadriradiata (hairy galinsoga) and Galinsoga parviflora (smallflower galinsoga, gallant soldier) are very troublesome weeds in many vegetable row crops in Europe. To optimise management strategies for Galinsoga spp. control, an in‐depth study of germination biology was performed. Germination experiments were conducted to evaluate the impact of light and alternating temperatures on germination of a large set of Galinsoga populations. Seedling emergence was investigated by burying seeds at different depths in a sandy and sandy loam soil. Dormancy of fresh seeds harvested in autumn was evaluated by studying germination response in light at 25/20°C with and without nitrate addition. Seed longevity was investigated in an accelerated ageing experiment by exposing seeds to 45°C and 100% relative humidity. Galinsoga spp. seeds required light for germination; light dependency varied among populations. Seedling emergence decreased drastically with increasing burial depth. Maximum depth of emergence varied between 4 and 10 mm depending on soil type and population. In a sandy soil, emergence percentages were higher and seedlings were able to emerge from greater depths than in a sandy loam soil. Freshly produced G. parviflora seeds, harvested in autumn, showed a varying but high degree of primary dormancy and were less persistent than G. quadriradiata seeds that lack primary dormancy. Lack of primary dormancy of freshly harvested G. quadriradiata seeds and light dependency for germination may be used to optimise and develop Galinsoga management strategies.  相似文献   

13.
Phelipanche ramosa (Branched broomrape) is an obligate root parasitic plant that is a major pest of oilseed rape in France. Knowledge on seed viability and dormancy under field conditions is crucial to understand how to control P. ramosa, but is as yet unknown. Our study aimed to quantify these processes with a 2‐year seed burial experiment. Two genetically distinct populations of P. ramosa were studied, collected on winter oilseed rape (population O) and hemp (population H). Seed mortality was very low in both populations (4–7% per year). Although obligate parasitic seeds are assumed to germinate only after exposure to germination stimulants from host root exudates, a high proportion of population H seeds germinated spontaneously (up to 90%). Seeds of both populations displayed seasonal dormancy, with timing and magnitude depending on the population. Dormancy was low at the time each native host crop is usually sown. Populations differed in germination dynamics, with seeds of population H germinating faster. The difference in behaviour that we observed between populations is consistent with reported adaptations of pathovars to their preferred hosts. The results indicate that the parasitic plant management requires targeting at the populations concerned. For example, delayed sowing is more promising against population O than against population H.  相似文献   

14.
The transition from seed dormancy to germination is a multi‐step process. However, distinguishing between physiological processes involved in seed dormancy alleviation and those involved in germination has been difficult. We studied the seed dormancy alleviation process in Amaranthus tuberculatus, an important weed species in midwestern USA. Using three A. tuberculatus biotypes that differ in dormancy level, it was determined that stratification reduced seed dormancy from a high to a low level. Temperature alternation alleviated low seed dormancy and triggered germination. Exogenously applied abscisic acid (ABA) and gibberellic acid (GA) had no effect on seeds with high dormancy. However, ABA and paclobutrazol (a GA biosynthesis inhibitor) significantly reduced germination of seeds with low dormancy. Hormones could not replace the effects of stratification or temperature alternation on dormancy alleviation. Based on our results, we propose a seed dormancy–germination transition model in which the dormancy of A. tuberculatus seeds is progressively reduced from a high to a low level; but environmental conditions (i.e. stratification) can accelerate the dormancy alleviation process. Under low dormancy levels, the seed is more sensitive to environmental cues that are responsible for removing dormancy and triggering germination (i.e. temperature alternation). Finally, ABA and GA regulation occurs primarily during the final transition from low dormancy to germination rather than the alleviation of high dormancy.  相似文献   

15.
Fresh seeds of oilseed rape (Brassica napus) are reported to be nondormant and nonphotoblastic. However, a portion of the seeds can be induced into a light‐requiring state (secondary dormancy) for germination and also exhibit dormancy cycling. Thus, if seeds become buried in the soil they can form a persistent seedbank and become a serious volunteer weed in succeeding crops. The capacity of nondormant seeds of B. napus to be induced into secondary dormancy is contrary to results of studies on fresh nondormant seeds of some other species. A reanalysis of published and unpublished data shows that fresh seeds of this species have some degree of primary dormancy and that there is a significant relationship between primary dormancy and the capacity to enter secondary dormancy. However, most germination tests on B. napus have not been done in enough detail to detect primary dormancy (or not) in fresh seeds of this species. The usefulness of information on the relationship between primary dormancy and the capacity of the seeds to enter secondary dormancy is discussed in relation to management of weedy volunteers of this species.  相似文献   

16.
Dormancy release was studied in four populations of annual ryegrass (Lolium rigidum) seeds to determine whether loss of dormancy in the field can be predicted from temperature alone or whether seed water content (WC) must also be considered. Freshly matured seeds were after‐ripened at the northern and southern extremes of the Western Australian cereal cropping region and at constant 37°C. Seed WC was allowed to fluctuate with prevailing humidity, but full hydration was avoided by excluding rainfall. Dormancy was measured regularly during after‐ripening by germinating seeds with 12‐hourly light or in darkness. Germination was lower in darkness than in light/dark and dormancy release was slower when germination was tested in darkness. Seeds were consistently drier, and dormancy release was slower, during after‐ripening at 37°C than under field conditions. However, within each population, the rate of dormancy release in the field (north and south) in terms of thermal time was unaffected by after‐ripening site. While low seed WC slowed dormancy release in seeds held at 37°C, dormancy release in seeds after‐ripened under Western Australian field conditions was adequately described by thermal after‐ripening time, without the need to account for changes in WC elicited by fluctuating environmental humidity.  相似文献   

17.
Trials were carried out to study the germination and dormancy of Cuscuta campestris Y. (dodder) seeds and factors influencing the success of early parasitisation of sugarbeet. Primary dormancy can be removed by seed scarification. Germination was negligible at 10°C and optimal at 30°C, while it was not influenced by light. Seed burial induced a cycle of induction and breaking of secondary dormancy. Seedling emergence was inversely proportional to the depth of seed burial and only seed buried within 5 cm of the soil surface emerged. Storage of C. campestris seeds in a laboratory for 12 years resulted in the loss of primary dormancy, enabling the germination of all viable seeds. Host infection (i.e. protrusion of parasite haustoria from host tissue) was heavily influenced by host growth stage. Tropism towards a host was due to the perception of light transmitted by green parts of sugarbeet plants. Insertion of a transparent glass sheet between host leaves and parasite seedlings did not modify this response. This phototropism permitted Cuscuta to identify host plants with high chlorophyll content as a function of the lower red/far red ratio of transmitted light.  相似文献   

18.
Seed populations of Avena sterilis ssp. ludoviciana (Durieu) Nyman were monitored in a naturally occurring infestation throughout its life cycle. Considering the large weed population present (298panicles m?2), total seed production was relatively low: 3838 seeds m?2. Only 68% of these seeds were recovered from the soil surface and a further 3% were removed with wheat grain and straw during harvest operations. The numbers of seeds from the stubble between mid-July and mid-September were relatively low (10%). Ploughing the stubble in October buried most of the recently produced seed rain and resulted in a relatively uniform vertical distribution of the seedbank. Maximum seed persistence in the soil ranged from 27 to 43 months (depending on the experimental technique used to do the study). Seed decline followed an exponential pattern on a yearly basis, with the greatest decline taking place between October and April (57–90% in year 1 and 10–40% in year 2), Between May and September the buried seed populations remained practically constant. Seedbank depletion was primarily due to seedling production (25%) and ‘lethal’ germination (24%). Although the depth of burial had very little effect on seed survival, the mode of seed disappearance was closely related to their depth in the soil. Seed depletion through ‘lethal’ germination increased with increasing depth in the soil, whereas depletion through seedling emergence decreased with increasing depth.  相似文献   

19.
Lithospermum arvense is an increasing annual weed in winter crops of the semiarid region of southern Argentina under low impact tillage systems, an agricultural practice that has become popular in recent years. Seed distribution in the soil profile under conventional tillage will change when reduced tillage is implemented, thus affecting the germination microenvironment. The effect of seed burial depth and soil water regime on field germination, enforced dormancy, innate dormancy and seed decay was studied in relation to burial time in a field experiment. In addition, the effect of burial depth on seed germination and seedling emergence was examined under laboratory controlled conditions. Field germination of buried seed ranged from 55% to 65% for shallow (2 cm) and from 5% to 30% for greater depths (20 cm). Enforced dormancy levels were significantly higher among deeper seeds. The amount of innate dormant seeds was reduced to <10% after a year of burial. Lithospermum arvense seedbanks can be classified as short-term persistent. Germination in the laboratory was unaffected by burial depth, while seedling emergence reduction was adequately described by a sigmoidal model. Results indicate that agricultural practices that accumulate L. arvense seeds near the soil surface enhance seedling recruitment.  相似文献   

20.
Mikania micrantha (mile‐a‐minute) reproduces both by seed and vegetatively. A study to determine the possible pollinators, seed production rates, temperature and salinity limitations to germination and its seedbank size and persistence was conducted in Viti Levu, Fiji. Representatives of the Diptera had the greatest percentage of all floral visits (38%), followed by Hymenoptera (34%) and Lepidoptera (27%), while the honeybee was the most recurring visitor (18% of all visits). Flower heads (capitula) within the inflorescence commonly formed four viable seeds, resulting in 60 820 filled seed being produced per m2. However, the seedbanks formed were not massive (600 seed m?2) and they were moderately persistent (T50: 1–3 years). Seed germination from both high and moderate rainfall regions occurred rapidly, under a wide range of temperature regimes, with no primary dormancy being observed. This study indicates that the seed reproductive success of M. micrantha in the two rainfall regions of Fiji is due to a number of factors, including the production of large numbers of flowers, successful pollination by local insects and the subsequent production of a large number of viable seeds. These seeds have high viability, no dormancy and are capable of forming small‐to‐medium seedbanks that are moderately long‐lived. In addition, seeds can germinate under a wide range of temperature and salinity conditions. This knowledge on seed production, biology, longevity and salt tolerance is vital in the development of management plans of M. micrantha in Fiji.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号