首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 151 毫秒
1.
为给阿克苏地区制定合理的欧洲李栽培管理技术措施提供理论基础,以品种‘女神’、‘斯坦勒’和‘法兰西’为研究对象,通过常规石蜡切片法对其花芽内部生长点组织形态分化过程进行观察,探讨欧洲李在阿克苏地区的花芽分化进程。在6月26日第1次取样时,大多数的花芽已经处于始分化期。‘斯坦勒’的花芽在9月23日雌蕊分化基本完成,分化时间在90 d以上;‘女神’在10月20日基本完成雌蕊分化,分化时间大约在120 d。而‘法兰西’在10月20日只有60%的花芽雌蕊分化完成。欧洲李花芽分化进程可以分为未分化期、始分化期、花蕾原基分化期、花萼原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期7个分化时期。3个欧洲李品种花芽形态分化存在各时期重叠交错现象,各时期间没有明显的界限,均是逐步分化的,各品种花芽分化时期的形态特征大致相同,但是分化进程存在一定差异,‘斯坦勒’的雌蕊原基最先完成分化,其次是‘女神’,最后是‘法兰西’。  相似文献   

2.
野生巴旦杏花芽形态的分化过程   总被引:1,自引:0,他引:1  
为给扁桃的驯化栽培和开发利用提供理论依据,采用石蜡切片法,对新疆野生巴旦杏花芽形态的分化过程进行了观察与研究。结果表明:新疆野生巴旦杏花芽形态的分化时期可分为花芽分化初期、花萼分化期、花瓣分化期、雄蕊分化期、雌蕊分化期等5个时期;6月中旬开始进入花芽形态分化期,从花芽开始分化到雌蕊原基分化形成的各分化时期有重叠现象,整个分化时期集中在7月上旬至9月上旬;完成花芽形态分化所需时间为90~100d。  相似文献   

3.
为明确板栗雌花分化的解剖学特点,以河北迁西板栗‘燕山早丰’为研究对象,通过制作石蜡切片显微观察雌花的内部解剖构造,结合外部形态变化,研究了板栗的花芽分化过程。结果表明:板栗雌花在河北迁西地区从4月初开始分化,6月上旬雌花大量盛开,整个分化过程需70 d左右,分化过程可分为未分化期、分化前期、花序原基分化期、苞片原基分化期、雌花簇原基分化期、雌蕊原基分化期,板栗花芽分化温度在8.8℃至25.7℃间,雌蕊原基形成到雌花盛开温度在9.7℃至23.3℃间为宜。根据有效积温、芽体大小、形状、叶片颜色等方面,建立了板栗雌花分化过程中外部形态变化与内部解剖特点之间的关系。  相似文献   

4.
不同温度处理对石斛兰花芽分化和发育的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
[目的]准确了解石斛兰花芽分化规律,研究不同的温度处理对春石斛兰花芽分化和发育的影响,为石斛兰的花期调控提供技术支持。[方法]采用石蜡切片法观察了石斛兰(Dendrobium Spring Snow)花芽的形态发生和结构发育过程,研究了26/21℃、22/17℃、18/13℃处理条件下花芽分化和发育的差异性。[结果]研究表明:石斛兰花芽分化过程可分为7个时期:休眠期、萌动期、花序原基分化期、花蕾原基分化期、萼片原基分化期、花瓣原基分化期、合蕊柱分化期。在高温26/21℃处理条件下,石斛兰不能进行花芽分化,22/17℃处理条件下,需要56 d才能完成花芽分化,在18/13℃条件下,35 d能够完成花芽分化。[结论]持续足够时间的低温是花芽分化的关键,萌动期是一个对温度高度敏感的时期,此时至少经历2周的低温,能够形成花芽,经历高温,则形成高芽。花芽形成后温度高有利于花芽的发育。  相似文献   

5.
为了了解‘辣椒杏’花芽分化时期与分化特点,从而为降低其败育率、丰产栽培及育种提供有效的理论依据,通过外部形态观察及石蜡切片法对‘辣椒杏’等3个杏品种花芽分化进行研究。结果表明:‘辣椒杏’与‘旦杏’花芽分化集中在6月底至8月底,‘库买提’花芽分化集中在6月底至9月初。各品种所经历的分化时期一致,其分化过程分为未分化期、分化初期、萼片分化期、花瓣分化期、雄蕊分化期、雌蕊分化期6个时期。在同一时间可观察到处于不同分化时期的花芽,各时期均有重叠现象,但持续时间不同,‘辣椒杏’与‘旦杏’持续时间较为接近。在6个分化时期中分化初期历时最长,其它时期各品种历时10~30 d不等。‘辣椒杏’与‘旦杏’花芽分化的整体进程比‘库买提’早10 d左右,从花芽开始分化到雌蕊形成,3个品种均历时约90 d。  相似文献   

6.
【目的】柃木属植物为热带和亚热带常绿阔叶林灌木层优势种,传统认为是严格的雌雄异株,但在重庆缙云山钝叶柃却存在性别变异现象,即除了典型的雌株、雄株还有两性变异株。通过对不同分化时期的花芽进行形态和结构观察,比较两性变异花芽与典型的雌花芽、雄花芽分化过程的异同,旨在掌握钝叶柃不同性别花芽分化的整体进程及各分化时期的形态特征,明确花芽性别分化的关键时期,进而为探讨性别分化的相关机理提供重要的形态学证据。【方法】以钝叶柃典型的雌株、雄株、两性变异株的花芽为试验材料,采用常规石蜡切片法对花芽分化过程中的外部形态变化和组织结构进行观察分析。【结果】1)钝叶柃1~4个花芽着生于当年生新枝及2年生枝叶腋处; 2)花芽分化始于8月上旬,12月中下旬基本完成,历时120天左右,之后花芽处于休眠状态,次年2—3月进入始花期,两性变异花花芽分化时间晚于雄花芽、雌花芽; 3)花芽分化大致可以划分为5个时期,即苞片分化期、萼片分化期、花瓣分化期、雌雄蕊分化期、雌雄蕊成熟期; 4)在花芽发育过程中,两性变异花芽和雄花芽的雌雄蕊原基同时出现,雄花中雄蕊原基正常发育而雌蕊原基停止发育,两性变异花中雌雄蕊原基皆正常发育;雌花中只见雌蕊原基,未见雄蕊原基。5)在雌雄蕊分化期,两性变异花中,雌蕊原基发育速度略快于雄蕊原基,雌蕊发育与雌花一致,中央心皮原基基部愈合膨大,中部凹陷形成子房室,顶端愈合向上延伸形成花柱;雄蕊发育与雄花一致,雄蕊原基上端膨大形成花药,下端形成短的花丝。在雌雄蕊成熟期各花器官继续生长,发育日趋成熟。6) 3种不同性别花芽长宽比在分化的整个过程中均呈先上升后下降的趋势,雄花芽在萼片分化期长宽比值达到峰值,而雌花芽、两性变异花芽均在雌雄蕊分化期达到峰值。花芽外部形态特征(形状、色泽)在5个分化时期的动态变化依次为圆锥形(绿色)→椭圆形或近圆形(绿色褪尽,深紫红色)→圆胖(深紫红色)→圆形,雄花芽顶端圆钝,雌花芽、两性变异花芽顶端渐尖(紫红色逐渐褪去,绿色加深)→椭圆形(紫红色完全褪尽,由嫩绿色逐渐变成黄绿色或棕绿色)。【结论】钝叶柃3种不同性别花芽在苞片分化期、萼片分化期、花瓣分化期花芽形态和内部组织结构保持一致,而在雌雄蕊分化期出现较大差异,两性变异花芽与雄花芽的分化较为相似,均出现雌蕊、雄蕊原基,明确性别分化的关键期为雌雄蕊分化期,随着分化时期不断推进,花芽外部形态也发生相应的变化。  相似文献   

7.
以杜鹃红山茶为材料,采用石蜡切片法观察花芽分化过程,研究该过程与外部形态的相关性及其代谢产物的变化。结果表明:杜鹃红山茶花芽分化于5—9月间持续不断进行,该时段内能观察到处于不同分化阶段的花芽;其过程可分为生理分化期、花原基分化期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期。杜鹃红山茶花芽分化过程与其外部形态特征之间有着相对稳定的关系,可以通过花芽形态特征来对其进行判别。花芽分化期可溶性蛋白质含量先升高后降低,可溶性糖含量及可溶性糖/可溶性蛋白质先降低后升高;RNA、总核酸含量及RNA/DNA的变化趋势一致,均随花芽分化逐渐升高,在花瓣原基分化期达到最高,雄蕊、雌蕊原基分化期降低,而DNA含量在整个过程中一直处于较低水平且变化平缓。  相似文献   

8.
【目的】为深入研究枣树快速成花机制和花期调控等提供参考依据。【方法】以极早熟品种‘月光’、中熟品种‘京枣39’和极晚熟品种‘冬枣’为试材,从结果母枝(枣股)主芽萌动起,连续采集新生枣吊(结果枝),利用石蜡切片法进行花芽形态分化的观察;自零级花蕾出现至零级花开放结束连续采样,使用XTJ-4400体视显微镜观察花蕾形态发育和单花开放过程,使用CAM-MA成像软件进行拍照。【结果】不同品种花发育过程各阶段的形态学特征高度一致,但各发育阶段的历时在品种间存在显著差异。3个品种花芽分化均呈"快—慢—快"的规律,即萼片期向花瓣期分化历时最长,其前后各分化阶段的历时相对较短。在多年生枝上,‘月光’‘京枣39’‘冬枣’的单花完成花芽分化分别约需8、11和13 d,花蕾发育分别约需26、28和34 d,单花开放全过程历时均为1~2 d。‘月光’‘京枣39’‘冬枣’从花芽开始分化到单花开放完成分别约需36、41和49 d。与多年生枝条相比,‘冬枣’当年生新枝上花的发育进程明显较慢,单花完成花芽分化、花发育和单花开放分别约需21、37和2 d,共历时约60 d。【结论】不同品种花发育进程存在显著差异;品种间花发育进程的差异主要表现在花芽分化的萼片期和花瓣期及花蕾发育阶段,单花开放的速度基本一致;当年生枝上花的发育速度明显慢于多年生枝。  相似文献   

9.
<正>一、林木开花、结实的研究 1、花芽的分化和发育 为对开花进行调整,必须首先了解花芽的分化期。树木的芽有叶芽和花芽,它们在1年中的某个时期进行分化,叫做花芽分化。为了研究花芽的分化期,要在不同时期采取树芽,用显微镜观察内部形态变化。主要树种的花芽分化期:日本赤松、黑松是9月上旬至10月中旬;日本落叶松在7月上旬至下旬;日本柳杉是6月下旬至9月下旬;日本扁柏是7月上旬至9月下旬;山毛榉则在7月上、中旬。树木的花芽分化、大多在  相似文献   

10.
砀山酥梨花芽分化及开花物候期观察研究   总被引:1,自引:0,他引:1  
为确定砀山酥梨花芽分化时期,了解其开花过程,试验以砀山酥梨短枝顶芽为试材,采取田间摘叶法,统计花芽的生理分化时期;通过徒手切片、利用OlympusBX51显微镜拍摄记录花芽形态分化不同阶段的纵切面图片。结果表明,砀山酥梨花芽的生理分化始于6月初,持续到7月中下旬;花芽形态分化始期发生在7月下旬,9月中旬为雄蕊出现期,雌蕊出现期在10月中下旬。次年3月下旬,花芽开始膨大,经历花序伸长、花序分离、白蕾期、大蕾期、初花期、盛花期、末花期和谢花期,4月中旬,开花物候期结束。试验结果为促进砀山酥梨花芽分化、提高果实产量与品质,于花期采取适当的栽培管理措施,提供了理论依据。  相似文献   

11.
垂丝海棠品种数量分类研究   总被引:1,自引:0,他引:1  
采用数量分类学方法对27个垂丝海棠品种的19个性状进行了聚类分析。R型聚类分析结果表明垂丝海棠品种用于形态分类学研究的多数性状具有相对独立性和稳定性。Q型聚类分析结果表明:枝条直立或下垂应作为垂丝海棠品种分类的第一级标准,花径、花型应作为第二级标准,叶色、花期等应作为第三级标准。  相似文献   

12.
目的]了解和掌握山鸡椒雌花花芽分化的形态特征及碳氮营养规律,为山鸡椒人工栽培及杂交育种提供参考依据。[方法]采用石蜡切片法观察山鸡椒雌花花芽分化的组织解剖结构,采用生理试剂盒-分光光度法测定雌花不同分化时期的可溶性糖、淀粉、可溶性蛋白、碳氮比等碳氮营养指标。[结果]表明:(1)山鸡椒雌花花芽分化经过未分化期—花序原基分化期—苞片原基分化期—花原基分化期—花器官分化期5个时期。(2)叶片可溶性糖含量随着花芽分化的发展呈不断升高的趋势,最高可达65.07 mg·g~(-1)。叶片淀粉含量随着分化时期的推进呈先升后降的趋势,其最高值出现在苞片原基分化期,达到81.30 mg·g~(-1),最低值出现在花器官分化期,为52.19 mg·g~(-1)。(3)叶片可溶性蛋白含量在花芽前3个分化期呈持续下降趋势,从61.32 mg·g~(-1)下降到52.48 mg·g~(-1),之后基本保持稳定。叶片中的碳氮比在花芽前3个分化期呈持续上升趋势,从1.49上升至2.61,之后基本维持在较高水平。[结论]山鸡椒雌花花芽分化的内部形态特征与雄花基本一致,雌花花芽分化分为5个时期。山鸡椒雌花花芽分化过程中,叶片中可溶性糖不断升高,而可溶性蛋白下降明显,碳氮比升高且保持在较高水平。  相似文献   

13.
以4年生光皮树嫁接苗为材料,在研究花芽分化过程中解剖学特征的基础上,测定同品系、同龄的光皮树叶内生长素(IAA)、赤霉素(GA3)、玉米核苷素(ZR)、脱落酸(ABA)等4种内源激素含量的动态变化,研究其成花过程中叶片内源激素含量的变化与成花的关系。结果表明:光皮树花芽分化过程可划分为5个时期:花芽未分化期、花序分化期、花萼分化期、花瓣分化期和雌、雄蕊分化期,其中花序分化期还可分为分化前期和分化后期;在花芽分化阶段,IAA、GA3含量保持稳定的相对较低水平,ABA含量高且变化幅度较大,ZR含量相对较低,但随着花的形成含量逐渐升高;高水平的ABA/IAA有利于花芽的形态分化,低水平的ZR/GA3有利于花芽孕育。4种内源激素含量的动态变化均影响光皮树的成花过程。  相似文献   

14.
果桑花芽分化观察   总被引:2,自引:2,他引:2  
通过两年的研究,认为果桑的花芽分化可分为未分化期,花序原基分化始期,花序总轴分化期,单花原基分化期,萼片分化期,雌蕊分化期及柱头子房形成期等7个阶段。其分化期为5月下旬至ll月中旬,盛期在7~9月份,并观察分析了其分化特点。  相似文献   

15.
张琴  刘德良 《经济林研究》2001,19(1):17-19,25
本文对三台核桃进行动态和定态观测,结果表明:牙于3月下旬开始分化,先后顺序是叶芽、雄花芽、混合芽;品种不同,顶(侧牙的抽生情况不同,其中结果母枝粗是影响顶(侧)芽抽生数的主要性状;雄花芽的抽生数大于混合芽的抽生数,雄花序开放至脱落历时16d左右。  相似文献   

16.
琴叶风吹楠生物学特征观察   总被引:1,自引:2,他引:1  
通过6年时间对琴叶风吹楠生物学特征和对雄花序和雌花序特征的研究,结果表明,雄花序和雌花序的外部特征在花蕾期就表现出明显区别,主要表现在花序结构、花蕾颜色、花蕾形态以及花(序)梗颜色等几个方面。文中对雌、雄花序的特征作了详细描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号