首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The relatively low solubility and availability of phosphorus (P) from indigenous phosphate rock could be enhanced by legumes in the acid soils of humid forest agroecosystems. Crotalaria micans L. was grown in a screenhouse without P or with P from triple superphosphate (TSP) and Malian Tilemsi Rock P. The P response of 20 cover crops was field‐evaluated using TSP and Rock P. In both experiments, the fertilized cover crops were followed by upland rice without mineral N or P application. Mean rice grain yield and agronomic residual P‐use efficiency were similar for both P sources. In the field, 1‐year fallow treatment of Canavalia ensiformis (velvet bean) supplied with Mali Rock P gave the highest rice grain yield of 3.1 Mg ha?1, more than 180% that of 2‐year continuous unfertilized rice (cv. ‘WAB 56‐50’). Among continuous rice plots, ‘NERICA 2’ (interspecific rice) supplied with Rock P produced the highest yield (2.0 Mg ha?1), suggesting that ‘NERICA 2’ might have greater potential to solubilize rock P. Results indicate that when combined with an appropriate legume, indigenous rock‐P can release sufficient P to meet the P requirement of the legume and a following upland rice crop in rotation.  相似文献   

2.
This study determines the impact of biochar, as a supplement, on soil nutrient availability and yields for three crops within commercial management systems in a temperate environment. Central to the suggestion of biochar benefits is an increase in soil nutrient availability, and here, we test this idea by examining crop nutrient uptake, growth and yields of field‐grown spring barley, strawberry and potato. Biochar produced from Castanea sativa wood was incorporated into a sandy loam soil at 0, 20 and 50 t/ha as a supplement to standard crop management practice. Fertilizer was applied normally for each of the three crops. The biochar contained substantial concentrations of Ca, Mg, K, P, but only K occurred at high concentration in water‐soluble analysis. The large concentration of extractable K resulted in a significant increase of extractable K in soil. The increased availability of K in biochar‐treated soil, with the exception of spring barley grain and the leaves of strawberry during the second year, did not induce greater tissue concentrations. In general, biochar application rate had little influence on the tissue concentration of any nutrient, irrespective of crop or sampling date. There was, however, evidence of a biochar‐induced increase in tissue Mo and a decrease in Mn, in strawberry, which could be linked to soil alkalinization as could the reduction in extractable soil P. These experiments show a single rotational application of biochar to soil had no effect on the growth or harvest yield of any of these field‐grown crops. Heavy metal analysis revealed small concentrations in the biochar (i.e. <10 μg/g biochar), with the largest levels for Ni, V and Cu.  相似文献   

3.
A 2‐year field experiment and a pot experiment were carried out to compare Mn uptake, tillering, and plant growth of lowland rice grown under different soil water conditions in the ground‐cover rice‐production system (GCRPS) in Beijing, North China. The field experiment was conducted in 2001 and 2002, including two treatments: lowland‐rice variety (Oryza sativa L. spp. japonica) grown under thin (14 μm) plastic‐film soil cover (GCRPSplastic) at 80%–90% water‐holding capacity (WHC) and traditional lowland rice (paddy control) grown with 3 cm standing‐water table. The pot experiment was conducted in a greenhouse with four treatments: (1) traditional lowland rice: paddy control; (2) GCRPS, water‐saturated soil: GCRPSsaturated; (3) GCRPS at 90% water‐holding capacity (WHC): GCRPS90%WHC; and (4) GCRPS at 70% WHC: GCRPS70%WHC. Results of the field experiment showed that dry‐matter production, number of tillers, as well as N and Mn concentrations in rice shoots of GCRPS were significantly lower than in paddy control, while there was no significant difference in shoot Fe, Cu, Zn, and P concentration and nematode populations. In the pot experiment, shoot Mn concentration significantly decreased with decreasing soil water content, while soil redox potential increased. Shoot–dry matter production and tiller number of GCRPSsaturated were significantly higher than in other treatments. Significant correlations were observed between the shoot Mn concentration and tiller number at maximum tillering stage in the field and pot experiment, respectively. We therefore conclude that the limitation of Mn acquisition might contribute to the growth and yield reduction of lowland rice grown in GCRPS. The experiment provides evidence that GCRPSplastic combined with nearly water‐saturated soil conditions helps saving water and achieving optimum crop development without visual or latent Mn deficiency as observed under more aerobic conditions.  相似文献   

4.
To ensure high yield and quality in organic vegetable production, crops often require additional fertilizer applied during the season. Due to the risk of contamination of edible plant products from slurry, plant‐based fertilizers may be used as an alternative. The purpose of our work was to develop mobile green manures with specific high nutrient concentrations (e.g., nitrogen [N], sulfur [S], and phosphorus [P]) that are released quickly after soil incorporation and that are easy to handle during storage and application. To distinguish from traditional green manures that are grown to improve soil fertility, the term “mobile green manures” is used for green‐manure crops that are harvested in one field and then moved as a whole and used as fertilizer in other fields. To further investigate mobile‐green‐manure crops for use as efficient fertilizers, pot and field experiments were conducted with cauliflower (Brassica oleracea botrytis) and kale (Brassica oleracea sabellica) supplied with organic matter consisting of a wide range of plant species with varying nutrient concentrations. Further, field experiments were conducted with leek (Allium porrum) and celery (Apium graveolens dulce) supplied with increasing amounts of organic matter consisting of fresh, ensiled, or dried green manures. Results show that garden sorrel (Rumex acetosa), dyer's woad (Isatis tinctoria), and fodder radish (Raphanus sativus) harvested with a high leaf‐to‐stem ratio resulted in high P concentration, and cruciferous crops in high S concentration. Dyer's woad, salad burnet (Sanguisorba minor), and stinging nettle (Urtica dioica) showed high boron (B) concentration, whereas species such as dandelion (Taraxacum officinale), chicory (Cichorium intybus), and garden sorrel showed high potassium (K) concentration. Green manures with high P and S concentrations increased the nutrient uptake and yield of pot‐grown cauliflower and kale. Field experiments showed that the production of cauliflower and kale decreased when the carbon‐to‐nitrogen (C : N) ratio of applied green manure increased. In kale, for example, application of 160 kg N ha–1 in early harvested lucerne (Medicago sativa) with a C : N ratio of 10 resulted in the highest kale production whereas application of an equal amount of N in late harvested lucerne with a C : N ratio of 20 produced 34% less. Differences in vegetable production were not due to the amount of N applied, but to the N availability. Field experiments with fresh, ensiled, or dry green manure applied to leek and celery showed that the C : N ratio has to be low to get a fast response. Further, these field experiments demonstrate the importance of green manures, which can be stored and are easy to handle during transport, crop application, and soil incorporation. It is concluded that it is possible to produce green manures with high concentrations of S, P, K, and B, and low C : N ratios and that these properties have a great impact on the value of the green manure for vegetable production.  相似文献   

5.
Research often needs to determine iron (Fe) concentrations in plant tissue samples. Current established methods depend on equipment and often require skilled laboratory staff, large sample sizes, and are relatively slow and expensive. We propose an efficient and fast method for measuring Fe concentrations of small rice samples via a microplate reader using sodium dithionite (SDT) as reducing agent and dipyridyl (DPD) as coloring agent. The results show that the method yields results comparable to ICP‐OES measurements which were used as standard method. Different concentrations of the chemicals used were tested for extraction, reducing power, and coloring efficiency, to optimize the method for the range of concentrations to be expected in rice under toxic Fe conditions. Best results were obtained using 500 mM SDT and 10 mM DPD, a sample size of 0.01g dry weight, and Fast Prep as extraction method. A linear calibration curve was obtained for 0 to 100 mg kg?1 iron within the measured samples. The method proposed here was successfully applied to measure total Fe concentration in oven‐dried, milled plant samples. Applicability of the method for tissues other than rice and suboptimal extraction methods are discussed.  相似文献   

6.
《Soil Use and Management》2018,34(3):326-334
Chemical soil phosphorus (P) extraction has been widely used to characterize and understand changes in soil P fractions; however, it does not adequately capture rhizosphere processes. In this study, we used the biologically based phosphorus (BBP ) grading method to evaluate the availability and influencing factors of soil P under four P fertilizer regimes in a typical rice–wheat cropping rotation paddy field. Soil P was assessed after seven rice‐growth seasons at multiple growth stages: the seedling, the booting and the harvest stage. Soil CaCl2‐P, citrate‐P and HC l‐P (inorganic P, Pi) as well as enzyme‐P (organic P, Po) were not significantly different between soil treated with P fertilizer during the wheat season only (PW ) and during the rice season only (PR ) compared with soil treated during both the rice and the wheat seasons (PR +W) at all three rice‐growth stages. No P fertilizer application during either season (Pzero) significantly reduced the concentration of soil citrate‐P and HC l‐P at the rice‐seedling and harvest stages. Significant correlations were observed between the HC l extraction and Olsen‐P (R 2 = 0.823, <  0.001), followed by enzyme‐P (R 2 = 0.712, <  0.001), citrate‐P (R 2 = 0.591, <  0.001) and CaCl2‐P (R 2 = 0.133, <  0.05). Further redundancy analysis (RDA ) suggested that soil alkaline phosphatase (S‐ALP ) activity played a role in soil P speciation changes and was significantly correlated with enzyme‐P, citrate‐P and HC l‐P. These results may improve our ability to characterize and understand changes in soil P status while minimizing the overapplication of P fertilizer.  相似文献   

7.
The rice–wheat cropping system (RWCS), producing about 5–10 Mg ha–1 y–1 of grain, is the backbone of food‐crop production in South‐East Asia. However, this system shows signs of fatigue as indicated by declining yields, negative nitrogen (N) balances, and reduced responses to applied fertilizer at some research centers. The return of rice and wheat residues can recycle up to 20%–30% of the N absorbed by the crops. However, their wide C : N ratio can temporarily immobilize native and applied N. To overcome this immobilization, wheat‐straw application was supplemented with the incorporation of Sesbania green manure and mungbean residues, and their effects on productivity, agronomic N efficiency, and system's apparent N balances were studied. Combining the application of wheat straw with Sesbania green manure or mungbean residues increased cereal grain yield and agronomic N efficiency and improved the generally negative apparent N balances. The combined use of wheat straw and mungbean produced an additional 0.5–0.6 t ha–1 protein‐rich grain and thus appears to be the most promising residue‐management option for rice–wheat cropping systems in South Asia, provided that the transition cropping season between wheat harvest and rice transplanting is long enough.  相似文献   

8.
As a cover crop, buckwheat (Fagopyrum esculentum) may increase soil‐P availability. Buckwheat was grown in low‐P and P‐fertilized field plots, and organic anions were measured in rhizosphere soil. Soil‐P availability was not affected by buckwheat, but the concentration of rhizosphere tartrate2– was significantly higher (p < 0.005) in low‐P vs. P‐fertilized plots. This suggests that organic‐anion root exudation may have a role in buckwheat‐rhizosphere P dynamics.  相似文献   

9.
Resistances of newly bred Bacillus thuringiensis (Bt) crops have been dramatically improved because of the effective and high expression of Bt protein in the plant. However, poorer adaptabilities to environmental stresses were observed in some Bt crops compared to their non‐Bt counterparts. The biological reasons for the poorer adaptabilities were still unclear. A nitrogen (N) deficiency experiment was conducted to investigate variations in growth and physiology characteristics of a newly bred Bt rice [Oryza sativa L. line MH63 (Cry2A*)] compared to its non‐Bt counterpart MH63. MH63 (Cry2A*) showed lower grain yields and lower biomass under low N levels compared to MH63. Earlier leaf senescence associated with disorder in protein metabolism was observed in MH63 (Cry2A*) when the N concentration was lower than 13.50 mg g?1 in MH63 (Cry2A*) leaves and the ratio of Bt protein to soluble protein (BT : SP) was higher than 2203 μg g?1 in MH63 (Cry2A*) leaves. The lower grain yield, the lower biomass and the earlier leaf senescence associated with disorder in protein metabolism in MH63 (Cry2A*) were correlated to the high BT : SP in MH63 (Cry2A*) leaves. The results suggest that MH63 (Cry2A*) has a poorer adaptability to N deficiency compared to its non‐Bt counterpart MH63. This poorer adaptability might be related to the high Bt protein expression in MH63 (Cry2A*).  相似文献   

10.
Abstract

Earlirose rice (Oryza sativa L. ) and Hawkeye soybeans (Glycine max L.) were grown in solution culture with A12(SO4)3 in concentrations of 0, 10‐6, 10‐5, 10‐4, 10‐3 M. Only at 10‐4 (slightly) and at 10‐3 M were there yield depressions due to Al. The threshold concentration of Al for toxicity was about 20 μg/g in rice shoots and about 30 μg/g in soybean leaves. The solution level necessary for these concentrations was 8 μg Al/ml. Plant concentrations which caused severe toxicity were 70 μg Al/g plant with 81 μg Al/ml solution. Most Al remained in roots, but leaves contained more than did stems of soybeans. The high Al decreased Fe, Cu, and Mn concentrations in shoots of rice and decreased Fe, Cu, and Zn in roots of rice. The high Al resulted in decreased Fe and Zn in leaves of soybeans. No Fe deficiency symptoms were present due to the high Al.  相似文献   

11.
12.
Silicon in rice (Oryza sativa L.) has been demonstrated to be involved in resistance to lodging, drought, and salinity, and also enhances resistance to pests and diseases. The aim of this study was to determine the range of silicon concentration in a set of rice (Oryza sativa L.) accessions, and to determine if the natural variation of shoot silicon is linked to the previously identified silicon transporters (Lsi genes). Silicon concentration was determined in 50 field‐grown accessions, representing all sub‐populations of rice, with all accessions being genotyped with 700K SNPs. SNPs within 10 kb of the Lsi genes were examined to determine if any were significantly linked with the phenotypic variation. An XRF method of silicon determination compared favourably with digestion and colorimetric analysis. There were significant genotypic differences in shoot silicon ranging from 16.5 to 42.4 mg g?1 of plant dry weight, but there was no significant difference between the rice sub‐populations. Plants with different alleles for SNPs representing Lsi2 and Lsi3 were significantly different for shoot silicon concentration. Shoot silicon correlated negatively with grain arsenic in the tropical and temperate japonica sub‐population, suggesting that accessions with high shoot silicon have reduced grain arsenic. This study indicates that alleles for Lsi genes are excellent candidate genes for further study to explain the natural variation of shoot silicon in rice.  相似文献   

13.
The synergistic effects of nitrogen‐fixing and phosphate‐solubilizing rhizobacteria on plant growth, yield, grain protein, and nutrient uptake of chickpea plants were determined in a sandy clay‐loam soil. Legume grain yield and concentration and uptake of nitrogen (N) and phosphorus (P) were significantly increased as a result of co‐inoculation with Mesorhizobium and P‐solubilizing Pseudomonas and Bacillus spp. The inoculation with M. ciceri RC4 + A. chroococuum A10 + Bacillus PSB9 tripled the seed yield and resulted in highest grain protein (295 mg g–1) at 145 d after sowing (DAS). An 8% increase in P concentration above the uninoculated control was observed in case of a single inoculation with Pseudomonas PSB 5, while the P uptake was highest (2.14‐fold above the uninoculated control) with a combined inoculation with [M. ciceri RC4 + A. chroococcum A10 + Bacillus PSB 9] at 145 DAS. The highest N concentration and N uptake at 145 DAS (81% and 16% above the uninoculated control, respectively) were observed with the triple inoculation of [M. ciceri RC4 + A. chroococcum A10 + Pseudomonas PSB 5). These findings show that multiple inoculations with rhizospheric microorganisms can promote plant growth and grain yield and increase concentrations and uptake of N and P by field‐grown chickpea.  相似文献   

14.
Interest in developing crop varieties with low grain phosphorus (P) in order to minimize the removal of P from fields in harvested grain has been limited due to the view that a low‐P grain trait may impair subsequent seedling vigor. This perception is based on relatively few studies, which typically investigated seedling growth on infertile soils, and used seed that may have differed in attributes other than P concentration. To investigate whether these anomalies cast sufficient doubt to warrant renewed research in this field, we compared the growth of rice seedlings from seed low in P obtained from P‐starved plants (P‐starved seed) vs. high‐P seeds (obtained from P‐fertilized plants) in P‐deficient and P‐replete soils. While plants from high‐P seed were superior in the P‐deficient soil, plants grown from P‐starved seed overcame an initial lull in early vigor to obtain similar biomass at maturity as plants grown from high‐P seed. Subsequent experiments were undertaken using high‐P seed vs. seed low in P from a range of rice genotypes that was not obtained from P‐stressed plants (low‐P seed): There was no reduction in seedling vigor or biomass and grain yields at maturity of plants from low‐P seeds in low‐P soil compared to plants from high‐P seed, though responses were genotype‐specific. The results suggest that multiple factors can confound the results of seed P × seedling vigor studies, and that a renewed research effort to define the minimum P levels in seeds required for adequate seedling growth across a range of environments is warranted.  相似文献   

15.
Phytic acid (myo‐inositol‐1,2,3,4,5,6‐hexakisphosphate) is the most abundant form of phosphorus (P) in cereal grains and is important to grain nutritional quality. In mature rice (Oryza sativa L.) grains, the bulk of phytic acid P is found in the germ and aleurone layer, deposited primarily as a mixed K/Mg salt. Phosphorus components and minerals were measured in whole grain produced by either the rice (Oryza sativa L.) cv. Kaybonnet (the nonmutant control) or the low phytic acid 1‐1 (lpa1‐1) mutant, and in these grains when milled to different degrees (10, 12, 17, 20, 22, and 25%, w/w). Phytic acid P is reduced by 42–45% in lpa1‐1 whole grain as compared with Kaybonnet, but these whole grains had similar levels of total P, Ca, Fe, K, Mg, Mn, and Zn. In both genotypes, the concentration of phytic acid P, total P, Ca, Fe, K, Mg, and Mn in the milled products was reduced by 60–90%, as compared with whole grain. However, a trend was observed for higher (25–40%) total P, K, and Mg concentrations in lpa1‐1 milled products as compared with Kaybonnet milled products. The reduction in whole grain phytic acid P in rice lpa1‐1 is accompanied by a 5‐ to 10‐fold increase in grain inorganic P, and this increase was observed in both whole grain and milled products. Phytic acid P was also reduced by 45% in bran obtained from lpa1‐1 grain, and this was accompanied by a 10‐fold increase in inorganic P. Milling had no apparent effect on Zn concentration. Therefore, while the block in the accumulation of phytic acid in lpa1‐1 seed has little effect on whole grain total P and mineral concentration, it greatly alters the chemistry of these seed constituents, and to a lesser but detectable extent, alters their distribution between germ, central endosperm, and aleurone. These studies suggest that development of a low phytate rice might improve the nutritional quality of whole grain, milled rice and the bran produced during milling.  相似文献   

16.
Background : Nepal's traditional rice–wheat rotation systems are subject to continuing changes. Changing consumer demand currently drives a replacement of wheat by high‐value vegetables during the dry season, while emerging water shortages lead to a substitution of rice by maize in the wet season. Hence, associated changes in soil aeration status and shifting conditions of soil nutrient supply to match crop nutrient demand are expected to increase the requirements for the principle limiting micro‐nutrients such as boron (B) and zinc (Zn). Aim: Our aim was to investigate the changes in B and Zn availability as well as crop yields and nutrient uptake after system shifts from rice to maize and from wheat to vegetables. Method : We analyzed the B and Zn availability in rice‐ and maize‐based systems as well as crop yields and the nutrient uptake by wheat, cauliflower, and tomato during the dry season in Nepal. Plants were grown at two field sites (midhills vs. lowland) and under greenhouse conditions using soils from the field sites. Results : A change from irrigated rice to maize reduced soil C and N contents with resulting decreases in dry season crop yields. Low soil Zn after rice cultivation led to shortage in Zn uptake by vegetables in both greenhouse and field experiments. The shift from wheat to vegetables increased the demand for B and to a lesser extent for Zn, and consequently vegetables showed visual symptoms of B deficiency. Boron concentrations in dry biomass were below the critical limits with < 10 mg B kg?1 in wheat, < 21 mg B kg?1 in cauliflower, and < 23 mg B kg?1 in tomato. Conclusions: Soils in larger parts of Nepal are low in available B and that the ongoing system shifts increase in the demand for B and Zn in the currently emerging and more diversified production systems.  相似文献   

17.
The use of phosphorus (P)‐efficient legumes is a prerequisite for sustainable intensification of low‐input agro‐ecosystems. A study was undertaken in a farmer's field in the tropical highlands of Ethiopia to assess the agronomic performance, P acquisition efficiency (PAE), and P utilization efficiency (PUE) of six improved faba bean varieties (Vicia faba L. var. CS‐20DK, Degaga, Gebelcho, Moti, Obse, Walki) without and with P application. Varieties showed significant variations in PUE, but P application had no significant effect on PUE. Variety Moti demonstrated highest PUE of 272 kg grain kg?1 P, which was 1.6‐fold higher than the lowest PUE (164 kg grain kg?1 P) of Gebelcho. PUE was significantly and positively correlated with grain yield (r = 0.542) and negatively correlated with shoot PAE (r = –0.541), indicating that PUE is important for grain yield. The results demonstrate that variations in grain and biomass yield of faba beans were largely due to differences in PUE and not due to PAE. Therefore, we argue that genetic resources of faba bean varieties showing optimal agronomic performance and high PUE in low‐input agro‐ecosystems should be better explored. Introduction of such varieties in low‐input cereal‐based cropping systems could improve and enhance P use efficiency at the system level.  相似文献   

18.
Despite a general consent about the beneficial contribution of arbuscular mycorrhizal fungi (AMF) on natural ecosystems, there is an intense debate about their role in agricultural systems. In this work, soybean (Glycine max L.) and sunflower (Helianthus annuus L.) field plots with different P availabilities were sampled across the Pampean Region of Argentina (> 150 samples from Mollisols) to characterize the relationship between available soil P and indigenous mycorrhizal colonization. A subsequent pot experiment with soybean and sunflower was carried out to evaluate the effect of P supply (0, 12, and 52 mg P kg–1) and AMF inoculation on AMF colonization and crop responsiveness to P in a Mollisol. Both crops showed high AMF colonization in the field (average: 55% for soybean and 44% for sunflower). While mycorrhizal colonization in soybean was significantly and negatively related to available soil P, no such trends were apparent in sunflower. Also, total biomass was 3.5 and 2.0 times higher in mycorrhizal than in nonmycorrhizal pot‐grown soybean under low‐ and medium‐P conditions, respectively. Sunflower, on the other hand, did not benefit from AMF symbiosis under medium and high P supply. While mycorrhization stimulated P‐uptake efficiency in soybean, the generally high P efficiency in sunflower was not associated with AMF symbiosis.  相似文献   

19.
Abstract

Mungbean [Vigna radiata (L). Wilczek] grown in rainfed calcareous soils suffers with phosphorus (P) deficiency. In view of high cost and low use efficiency of P fertilizer, greenhouse, incubation, and field experiments were carried out for determining P deficiency diagnostic criteria and efficient method of P fertilizer application in mungbean. In a pot culture experiment using a P‐deficient Typic Ustocherpt, maximum increase in grain yield with P was 686% over the control; and fertilizer requirement for near‐maximum (95%) grain yield was 30 mg P kg‐1 soil where fertilizer was mixed with the whole soil volume (broadcast) and 14 mg P kg‐1 where mixed with 1/4th soil volume (band placement). In a field experiment on a P‐deficient Typic Camborthid, however, maximum increase in grain yield was 262% over the control. Band placement resulted in 73% fertilizer saving as P requirement was 66 kg ha‐1 by broadcast and only 18 kg ha‐1 by band placement. Critical P concentration range appears to be 0.27–0.33% in young whole shoots (≤30 cm tall) and 0.25–0.30% in recently matured leaves. In an incubation study using the same Typic Ustochrept, P extracted by the sodium bicarbonate (NaHCO3), the ammonium bicarbonate‐diethlylenetriaminepentaacetic acid (AB)‐DTPA), and the Mehlich 3 soil tests correlated closely with each other, P concentration of whole shoots, and total P uptake by mungbean plants. Critical soil test P levels for pot grown mungbean were NaHCO3,9 mg kg‐1; AB‐DTPA, 7 mg kg‐1; and Mehlich 3, 23 mg dm‐3 soil. The more efficient and economical ‘universal’ soil test, AB‐DTPA, is recommended for P fertility evaluation of calcareous soils.  相似文献   

20.
Abstract

Zinc (Zn) deficiency is a widespread micronutrient disorder in crops grown in calcareous soils; therefore, we conducted a nutrient indexing of farmer‐grown rainfed wheat (Triticum aestivum, cv. Pak‐81) in 1.82 Mha Potohar plateau of Pakistan by sampling up to 30 cm tall whole shoots and associated soils. The crop was Zn deficient in more than 80% of the sampled fields, and a good agreement existed between plant Zn concentration and surface soil AB‐DTPA Zn content (r=0.52; p≤0.01). Contour maps of the sampled areas, prepared by geostatistical analysis techniques and computer graphics, delineated areas of Zn deficiency and, thus, would help focus future research and development. In two field experiments on rainfed wheat grown in alkaline Zn‐deficient Typic Haplustalfs (AB‐DTPA Zn, 0.49–0.52 mg kg?1), soil‐applied Zn increased grain yield up to 12% over control. Fertilizer requirement for near‐maximum wheat grain yield was 2.0 kg Zn ha?1, with a VCR of 4∶1. Zinc content in mature grain was a good indicator of soil Zn availability status, and plant tissue critical Zn concentration ranges appear to be 16–20 mg kg?1 in young whole shoots, 12–16 mg kg?1 in flag leaves, and 20–24 mg Zn kg?1 in mature grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号