首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was conducted for 3 crop years (July‐June) at the Indian Agricultural Research Institute, New Delhi to study the effects of Sesbania and cowpea green manuring (GM) and incorporation of mungbean residues after harvesting grain, Leucaena loppings, FYM and wheat straw incorporation before planting rice and application of 0,40,80 and 120 kg N ha?1 to rice on the soil organic carbon (SOC), alkaline permanganate oxidizable N (APO‐N), 0.5 M sodium bicarbonate extractable P (SBC‐P) and 1N ammonium acetate exchangeable K (AAE‐K) in surface 0–15 cm soil after the harvest of rice and wheat grown in sequence. Green manuring and addition of organic residues prevented the decline in SOC. On the other hand addition of N fertilizer tended to decrease SOC after rice harvest. On the contrary application of green manures, organic residues, FYM and fertilizer N increased APO‐N, which indicates the benefit of these treatments to a more labile soil organic N pool. Also application of green manures, organic residues, FYM and fertilizer N increased SBC‐P. Not much change was observed in AAE‐K by the treatments applied.  相似文献   

2.
Nitrogen (N) and phosphorus (P) deficiencies are key constraints in rainfed lowland rice (Oryza sativa L.) production systems of Cambodia. Only small amounts of mineral N and P or of organic amendment are annually applied to a single crop of rainfed lowland rice by smallholder farmers. The integration of leguminous crops in the pre‐rice cropping niche can contribute to diversify the production, supply of C and N, and contribute to soil fertility improvement for the subsequent crop of rice. However, the performance of leguminous crops is restricted even more than that of rice by low available soil P. An alternative strategy involves the application of mineral P that is destined to the rice crop already to the legume. This P supply is likely to stimulate legume growth and biological N2 fixation, thus enhancing C and N inputs and recycling N and P upon legume residue incorporation. Rotation experiments were conducted in farmers' fields in 2013–2014 to assess the effects of P management on biomass accumulation and N2 fixation (δ15N) by mungbean (Vigna radiata L.) and possible carry‐over effects on rice in two contrasting representative soils (highly infertile and moderately fertile sandy Fluvisol). In the traditional system (no legume), unamended lowland rice (no N, + 10 kg P ha?1) yielded 2.8 and 4.0 t ha?1, which increased to 3.5 and 4.7 t ha?1 with the application of 25 kg ha?1 of urea‐N in the infertile and the moderately fertile soil, respectively. The integration of mungbean as a green manure contributed up to 9 kg of biologically fixed N (17% Nfda), increasing rice yields only moderately to 3.5–4.6 t ha?1. However, applying P to mungbean stimulated legume growth and enhanced the BNF contribution up to 21 kg N ha?1 (36% Nfda). Rice yields resulting from legume residue incorporation (“green manure use”–all residues returned and “grain legume use”–only stover returned) increased to 4.2 and 4.9 t ha?1 in the infertile and moderately fertile soil, respectively. The “forage legume use” (all above‐ground residues removed) provided no yield effect. In general, legume residue incorporation was more beneficial in the infertile than in the moderately fertile soil. We conclude that the inclusion of mungbean into the prevailing low‐input rainfed production systems of Cambodia can increase rice yield, provided that small amounts of P are applied to the legume. Differences in the attributes of the two major soil types in the region require a site‐specific targeting of the suggested legume and P management strategies, with largest benefits likely to accrue on infertile soils.  相似文献   

3.
ABSTRACT

Potassium (K) nutrition of rice-wheat (RW) systems of the Indo-Gangetic Plain (IGP) of South Asia is important because of its role in productivity and the large quantities of this macronutrient that are extracted by such intensive cropping systems. Field experiments on the RW cropping sequence were conducted at three locations in Bangladesh with three soil types. Two fertilizer doses—farmers' practice (FP) and soil-test based (STB)—of nitrogen (N), phosphorus (P), K and other nutrients were combined with mungbean or maize as a third crop. The objective of the experiments was to detect K deficiency, if any, in rice, wheat, mungbean, and maize, and to compare the FP- and STB-based sequences in terms of the K nutrition of those crops and the apparent K balance in soil. Frequent K deficiency was observed in rice and wheat at all sites, especially at Ishwordi, while maize was less affected and mungbean not deficient. There was a significant effect of fertilizer on K uptake by maize, mungbean, and rice, but little effect of the retention of mungbean residue on K uptake by crops at any site. Mean annual system-level K uptake was greatest at Ishwordi (126–239 kg ha?1) and least at Joydebpur (64–116 kg ha?1). The majority of K uptake was in straw and the proportion in grain varied little across sites (range: 11%–29%). There were large negative apparent K balances in all treatments at all sites (range: ?25–212 kg ha?1), with the greatest at Ishwordi and the smallest at Joydebpur. Soil K balance responded differently to the retention of residues across soils, and positive effects could be observed on clayey soils. Long-term experiments will be required to monitor soil and plant K dynamics under various fertilizer and residue management of crops in RW systems of the IGP.  相似文献   

4.
Field experiments were carried out during rainy (kharif) and winter (rabi) seasons (June–April) of 2008–2010 at Indian Agricultural Research Institute (IARI), New Delhi, to study the productivity, nutrients uptake, iron (Fe) use-efficiency and economics of aerobic rice-wheat cropping system as influenced by mulching and Fe nutrition. The highest yield attributes, grain and straw yields (5.41 tonnes ha?1 and 6.56 tonnes ha?1, respectively) and nutrient uptake in rice was recorded with transplanted and puddled rice (TPR) followed by aerobic rice with Sesbania aculeata mulch. However, residual effect of aerobic rice with wheat straw mulch was more pronounced on yield attributes, grain and straw yields (4.20 and 6.70 tonnes ha?1, respectively) and nutrient uptake in succeeding wheat and remained at par with aerobic rice with Sesbania mulch. Application of iron sulfate (FeSO4) at 50 kg ha?1 + 2 foliar sprays of 2% FeSO4 was found to be the best in terms of all the yield attributes, grain and straw yield (5.09 and 6.17 tonnes ha?1, respectively) and nutrient uptake and remained at par with 3 foliar sprays of 2% FeSO4. Although residual effect of iron application failed to increase the yield attributes, yield and nutrient uptake nitrogen, phosphorus and potassium (N, P, K) except Fe. The highest system productivity, nutrient uptake, gross returns, net returns, B: C ratio and lowest cost of cultivation were recorded with aerobic rice with wheat straw and Sesbania aculeata mulch. Application of FeSO4 at 50 kg ha?1 + two foliar sprays of 2% FeSO4 was found better in respect of system productivity, nutrient uptake, gross returns, net returns, B:C ratio and cost of cultivation in aerobic rice-wheat cropping system. The Fe use efficiency values viz. partial factor productivity (kg grain kg?1 Fe), agronomic efficiency (kg grain increased kg?1 Fe applied), agrophysiological efficiency (kg grain kg?1 Fe uptake), physiological efficiency (kg biomass kg?1 Fe uptake), apparent recovery (%) utilization efficiency and harvest index (%) of applied Fe were significantly affected due to methods of rice production and various Fe nutrition treatments in aerobic rice and aerobic rice-wheat cropping system.  相似文献   

5.
The rice‐wheat annual double cropping system occupies some 0.5 million ha in the Himalayan foothills of Nepal. Alternating soil drying and wetting cycles characterize the 6–10 weeks long dry‐to‐wet season transition period (DWT) after wheat harvesting and before wetland rice transplanting. Mineral fertilizer use in the predominant smallholder agriculture is low and crops rely largely on native soil N for their nutrition. Changes in soil aeration status during DWT are likely to stimulate soil N losses. The effect of management options that avoid the nitrate build‐up in soils during DWT by N immobilization in plant or microbial biomass was studied under controlled conditions in a greenhouse (2001/2002) and validated under field conditions in Nepal in 2002. In potted soil in the greenhouse, the gradual increase in soil moisture resulted in a nitrate N peak of 20 mg (kg soil)–1 that rapidly declined as soil moisture levels exceeded 40 % water‐filled pore space (equiv. 75 % field capacity). Similarly, the maximum soil nitrate build‐up of 40 kg N ha–1 under field conditions was followed by its near complete disappearance with soil moisture levels exceeding 46 % water‐filled pore space at the onset of the monsoon rains. Incorporation of wheat straw and/or N uptake by green manure crops reduced nitrate accumulation in the soil to < 5 mg N kg–1 in pots and < 30 kg N ha–1 in the field (temporary N immobilization), thus reducing the risk for N losses to occur. This “saved” N benefited the subsequent crop of lowland rice with increases in N accumulation from 130 mg pot–1 (bare soil) to 185 mg pot–1 (green manure plus wheat straw) and corresponding grain yield increases from 1.7 Mg ha–1 to 3.6 Mg ha–1 in the field. While benefits from improved soil N management on lowland rice are obvious, possible carry‐over effects on wheat and the feasibility of proposed options at the farm level require further studies.  相似文献   

6.
Nitrogen (N) surpluses from fertilizer application can cause major environmental harm including pollution of surface water, groundwater, and air. To assess such negative externalities, N balances are a complex but useful tool to predict surpluses and to measure effects of nutrient optimization strategies in agriculture. The Yaqui Valley in north‐western Mexico is representative for thousands of square kilometres of intensive, irrigated wheat production under arid conditions worldwide and has been targeted for conservation agriculture in recent years. For these cropping systems, detailed N balances are scarce and often incomplete. To help fill this knowledge gap, data from a long‐term experiment were collected in 2013/14 on a Vertisol to examine the impact of three tillage‐straw management practices (CTB: conventionally tilled beds; PB‐straw: permanent raised beds with residue retention; PB‐burn: permanent raised beds with residue burning) on N dynamics. Tillage had significant effects on soil NO3‐N, NH4‐N, and total N contents across the cropping period. Soil total N content was at all sampling depths lowest in CTB. Soil NO3‐N in the 0–90 cm profile was highest in PB‐burn over the cropping period and ranged from 77 kg ha?1 in the bed before pre‐planting fertilizer application up to 269 kg ha?1 in the furrow after the second fertilizer application. Annual simple N balances were +59 kg N ha?1 in CTB, +39 kg N ha–1 in PB‐straw, and +46 kg N ha?1 in PB‐burn. Residual mineral soil N was significantly affected by tillage‐straw management and lowest for PB‐straw (+205 kg N ha?1) and highest for CTB, and for PB‐burn (+283 kg N ha?1 each) in the 0–90 cm soil profile. Soil NO3‐N moved out of the effective wheat root zone, as indicated by the high residual NO3‐N content at 30–90 cm depth, which is an important pathway of N leaching. Quantifiable N losses through leaching and volatilization averaged 100 kg N ha?1. Our findings suggest that there is potential for substantial reductions in N inputs in all tillage‐straw systems to decrease N losses and to reduce mineral residual soil N, but care should be taken to avoid reducing grain protein content, which in PB straw was already below the quality standard. A knowledge transfer of the European “Nmin” concept is advisable in this region to regulate N fertilizer over‐application.  相似文献   

7.
Summary Azolla spp. and Sesbania spp. can be used as green manure crops for wetland rice. A long-term experiment was started in 1985 to determine the effects of organic and urea fertilizers on wetland rice yields and soil fertility. Results of 10 rice croppings are reported. Azolla sp. was grown for 1 month and then incorporated before transplanting the rice and 3–4 weeks after transplanting the rice. Sesbania rostrata was grown for 7–9 weeks and incorporated only before transplanting the rice. Sesbania sp. grew more poorly before dry season rice than before wet season rice. Aeschynomene afraspera, which was used in one dry season rice trial, produced a larger biomass than the Sesbania sp. The quantity of N produced by the Azolla sp. ranged from 70 to 110 kg N ha-1. The Sesbania sp. produced 55–90 kg N ha-1 in 46–62 days. Rice grain yield increases in response to the green manure were 1.8–3.9 t ha-1, similar to or higher than that obtained in response to the application of 60 kg N ha-1 as urea. Grain production per unit weight of absorbed N was lower in the green manure treatments than in the urea treatment. Without N fertilizer, N uptake by rice decreased as the number of rice crops increased. For similar N recoveries, Sesbania sp. required a lower N concentration than the Azolla sp. did. Continuous application of the green manure increased the organic N content in soil on a dry weight basis, but not on a area basis, because the application of green manure decreased soil bulk density. Residual effects in the grain yield and N uptake of rice after nine rice crops were found with a continuous application of green manure but not urea.  相似文献   

8.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.  相似文献   

9.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

10.
Long-term effect of mungbean inclusion in lowland rice-wheat and upland maize-wheat systems on soil carbon (C) pools, particulate organic C (POC), and C-stabilization was envisaged in organic, inorganic and without nutrient management practices. In both lowland and upland systems, mungbean inclusion increased very-labile C (Cfrac1) and labile C (Cfrac2) in surface soil (0–0.2 m). Mungbean inclusion in cereal-cereal cropping systems improved POC, being higher in lowland (107.4%). Lowland rice-based system had higher passive C-pool (11.1 Mg C ha?1) over upland maize-based system (6.6 Mg C ha?1) indicating that rice ecology facilitates the stabilization of passive C-pool, which has longer persistence in soil. Organic nutrient management (farmyard manure + full crop residue + biofertilizers) increased Cfrac1 and carbon management index (CMI) over inorganic treatment. In surface soil, higher CMI values were evident in mungbean included cropping systems in both lowland and upland conditions. Mungbean inclusion increased grain yield of cereal crops, and yield improvement followed the order of maize (23.7–31.3%) > rice (16.9–27.0%) > wheat (lowland 7.0–10.7%; upland 5.4–16.6%). Thus, the inclusion of summer mungbean in cereal-cereal cropping systems could be a long-term strategy to enrich soil organic C and to ensure sustainability of cereal-cereal cropping systems.  相似文献   

11.
The effects of organic manure supplementation on rice–pulse cropping system productivity were studied. Three pulses, viz., blackgram, greengram and pea were grown after rice on the same plots to explore the feasibility of growing second crops with carry-over residual soil moisture and residual soil fertility. The study revealed that during the rainy season, 30%–35% higher rice grain yield was obtained when both inorganic and organic sources of nutrients were applied compared with the full dose of inorganic fertilizer, and the rice grain yield was 65%–78% higher than obtained following farmers’ practices. In the post-rainy season, pea crop recorded the highest grain yield of 490 kg ha-1 under the treatment combination of Sesbania and inorganic fertilizer. Organic carbon, and available N, P, K also enhanced yield by 20%–29%, 5.0%–29.4% to 7.9%–39.9% and 22.4%–60.3%, respectively when 25% N was applied through different organic sources of nutrients (green manure/press mud/farmyard manure).  相似文献   

12.
Tillage and residue retention affect nitrogen (N) dynamics and nutrient losses and therefore nitrogen use efficiency (NUE) and crop fertilizer use, however, there is little information about residual fertilizer effects on the subsequent crop. Micro‐plots with 15N‐labelled urea were established in 2014/2015 on a long‐term experiment on a Vertisol in north‐west Mexico. N fertilizer recovery (NFR) and the effects of residual fertilizer N for summer maize (Zea mays L.) and the subsequent wheat (Triticum durum L.) crop were studied in three tillage–straw management practices (CTB: conventionally tilled beds; PB‐straw: permanent raised beds with residue retention; PB‐burn: permanent raised beds with residue burning). Fertilizer 15N recovery rates for maize grain across all treatments were low with an average of 11%, but after wheat harvest total recovered 15N (15N in maize and wheat straw and grain, residual soil 15N) was over 50% for the PB‐burn treatment. NFR was lowest in CTB after two cropping cycles (32%). Unaccounted N from applied fertilizer for the maize crop averaged 120 kg 15N ha?1 after wheat harvest. However, more than 20% of labelled 15N was found in the 0–90 cm soil profile in both PB treatments after wheat harvest, which highlights the need for long‐term studies and continuous monitoring of the soil nutrient status to avoid over‐application of mineral N fertilizer.  相似文献   

13.
Nitrogen and weeds are two important factors that influence the productivity of rainfed upland rice (Oryza sativa L.) in tropical Asia. A low recovery of applied fertilizer N in rainfed uplands is generally associated with high nitrate leaching losses and weed interferences. Field experiments were conducted during the wet seasons of 2002 and 2003 at the research farm of Central Rainfed Upland Rice Research Station, Hazaribag, Jharkhand, India, to determine the response of upland rice to nitrogen applied at 60 kg N ha–1 as different forms of urea (single pre‐plant application of controlled‐release urea, single pre‐plant application of urea supergranules, and split application of prilled urea with or without basal N) against no N application under three weed‐control regimes (unweeded, pre‐emergence application of butachlor at 1.5 kg a.i. ha–1 supplemented with one single hand weeding or two hand weedings). The response of rice to applied N varied greatly among the three weed‐control regimes. Across the different N treatments, the application of 60 kg N ha–1 resulted in a grain‐yield increase above the unfertilized control of only 0.24 Mg ha–1 in unweeded treatments, whereas yields increased by 1.07 Mg ha–1 when butachlor application was supplemented with a single hand weeding and by 1.28 Mg ha–1 with two hand weedings. Among the weed‐control measures, hand weeding twice produced highest grain yield in both years. The comparison of different forms of urea showed that a single pre‐plant application of controlled‐release urea resulted in average grain yields of 1.57 and 1.87 Mg ha–1 compared to 1.32 and 1.30 Mg ha–1 in the case of the recommended practice of split‐applied prilled urea in the years 2002 and 2003, respectively. The highest agronomic N use efficiency of 15–20 kg grain per kg N applied and the highest apparent N recovery of 39%–45% were attained with controlled‐release urea, suggesting that this N form is particularly beneficial for upland‐rice cultivation under variable rainfall conditions, provided weeds are controlled.  相似文献   

14.
A laboratory study was conducted at the Indian Agricultural Research Institute, New Delhi on a sandy clay loam soil of pH 7.9 and organic C content of 0.34% to study the effect of incorporating Sesbania or Vigna legume residues or wheat straw at 15 and 30t ha?1 on temporal variation in ammoniacal and nitrate‐N in soil under submergence and well drained conditions. Under submergence most mineral N was present as ammoniacal‐N, while under well drained conditions it was present as Nitrate‐N. The content of ammoniacal N in soil was the highest after 30 days of incubation and declined thereafter under submergence. On the other hand under well drained conditions the mineral‐N (mostly nitrate) content in soil at 30 DAI was very little and showed increases only later, reaching the highest level at 90 DAI. Application of wheat straw specially at 301 ha?1 level resulted in immobilization of native soil‐N. These results show that rice which is grown under submergence can be transplanted soon after incorporation of legume residues, but for wheat or other crops which are grown under well drained condition a time interval of 30 days or more needs to be provided before sowing the crop.  相似文献   

15.
中国水稻不同产量、品种和种植制度下氮需求量变异状况   总被引:2,自引:0,他引:2  
Better understanding of the factors that influence crop nitrogen(N) requirement plays an important role in improving regional N recommendations for rice(Oryza sativa L.) production. We collected data from 1 280 plot-level measurements in different reaches of the Yangtze River, China to determine which factors contributed to variability in N requirement in rice. Yield, variety, and cropping system were significantly related to N requirement. The N requirement remained consistent at about 18.6 kg N Mg~(-1)grain as grain yield increased from 7 to 9 Mg ha~(-1), then decreased to 18.1, 16.9, and 15.9 kg N Mg~(-1)grain as yield increased to 9–10, 10–11, and 11 Mg ha~(-1), respectively. The decreased requirement for N with increasing yield was attributable to declining N concentrations in grain and straw and increased harvest index. Super rice variety had lower N requirement(17.7 kg N Mg~(-1)grain) than ordinary inbred and hybrid varieties(18.5 and 18.3 kg N Mg~(-1)grain, respectively), which was a result of lower grain and straw N concentrations of super rice. The N requirements were 19.2, 17.8, and 17.5 kg N Mg~(-1)grain for early, middle, and late rice cropping systems, respectively. In conclusion, the rice N requirement was affected by multiple factors, including yield, variety, and cropping system, all of which should be considered when planning for optimal N management.  相似文献   

16.
The influence of exogenous organic inputs on soil microbial biomass dynamics and crop root biomass was studied through two annual cycles in rice-barley rotation in a tropical dryland agroecosystem. The treatments involved addition of equivalent amount of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of each annual cycle: Sesbania shoot (high-quality resource, C:N 16, lignin:N 3.2, polyphenol+lignin:N 4.2), wheat straw (low-quality resource, C:N 82, lignin:N 34.8, polyphenol+lignin:N 36.8) and Sesbania+wheat straw (high-and low-quality resources combined), besides control. The decomposition rates of various inputs and crop roots were determined in field conditions by mass loss method. Sesbania (decay constant, k=0.028) decomposed much faster than wheat straw (k=0.0025); decomposition rate of Sesbania+wheat straw was twice as fast compared to wheat straw. On average, soil microbial biomass levels were: rice period, Sesbania?Sesbania+wheat straw>wheat straw?fertilizer; barley period, Sesbania+wheat straw>Sesbania?wheat straw?fertilizer; summer fallow, Sesbania+wheat straw>Sesbania>wheat straw?fertilizer. Soil microbial biomass increased through rice and barley crop periods to summer fallow; however, in Sesbania shoot application a strong peak was obtained during rice crop period. In both crops soil microbial biomass C and N decreased distinctly from seedling to grain-forming stages, and then increased to the maximum at crop maturity. Crop roots, however, showed reverse trend through the cropping period, suggesting strong competition between microbial biomass and crop roots for available nutrients. It is concluded that both resource quality and crop roots had distinct effect on soil microbial biomass and combined application of Sesbania shoot and wheat straw was most effective in sustained build up of microbial biomass through the annual cycle.  相似文献   

17.
Summary Two annual species of Sesbania, S. aculeata and Sesbania sp. PL Se-17, were field evaluated as green manure for wetland rice in an alkaline soil. The two species were raised as a catch crop during summer in a wheat-rice rotation, and added as 24.7 and 20.8 t ha–1 of green matter, 116 and 98 kg N ha–1, respectively, after 45 days of growth. For the optimum green manuring effect on rice grain yield and N uptake, S. aculeata required 5 days of decomposition (after turning in and before rice transplantation), whereas no decomposition period was necessary for Sesbania sp. PL Se-17. The effect on grain yield and N uptake of rice was equivalent to an application of 122 and 78 kg ha–1 of chemical N, for the two species, respectively. There was no residual effect of the green manuring on the soil N status after rice harvest.  相似文献   

18.
ABSTRACT

Nitrogen (N) nutrition of the rice-wheat (RW) systems of the Indo-Gangetic Plain is important for sustaining the region's productivity and food needs. Soil N plays an important role in regulating the supply of N to plants. Monitoring plant concentrations, uptake, and balance of N assist in our understanding of plant and soil N status and in devising N-fertilizer strategies for both individual crops and a cropping system. Field experiments with rice-wheat-mungbean and rice-wheat-maize annual cropping sequences were conducted at Joydebpur, Nashipur, and Ishwordi in Bangladesh, which differ in their soils and climates. The experiments compared three pre-rice treatments (mungbean residues retained, mungbean residues removed, and maize residues removed), supplying each with two fertilizer levels (soil-test based, or STB, and farmers' practice, or FP). Zero N (control) treatments were included, with all other nutrients applied as STB or FP. The objectives were to detect N deficiency, if any, in the component crops, and to determine the changes in soil N fertility, plant N uptake, and soil N balance for various RW sequences. There was a significant decrease in mineral N in the topsoil (0–15 cm) of the +N mungbean and maize-residues removed treatments at Ishwordi, and a generally significant but less marked decline under the same treatments at Nashipur. Wheat and maize crops suffered from N deficiency ranging from 33% to 95% each year, at all sites, but deficiency in rice and mungbean was minimal. Annual system-level N uptake across sites ranged from 89 kg ha?1 for the control to 239 kg ha?1 for sequences containing maize with N. There were significant linear relationships between total system productivity (TSP) and annual N application and between TSP and annual system-level N uptake. Considering no N loss through the system, N fertilizer resulted in a positive N balance that ranged between 24–190 kg ha?1 compared with a negative balance of between 40–49 kg ha?1 without it. However, if a 30% N loss was assumed, N balances were reduced to between ?37–62 kg/ha?1 for N-containing treatments, and to between ?64–55 kg/ha?1 for the control treatments. Further research is needed to understand N depletion and replenishment and to sustain the productivity of the RW system.  相似文献   

19.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

20.
The field experiments were conducted for two crop years of 1997?–?98 and 1998?–?99 at the Indian Agricultural Research Institute, New Delhi to study the effect of wheat, legume and legume enriched wheat residue (WR) on soil fertility under the rice-wheat cropping system. A rice-wheat cropping system without incorporation of residue depleted organic C over initial level by 0.061%, kjeldahl-N by 0.012%, available P by 0.7?kg ha???1 and available K by 36?kg ha???1, whereas incorporation of Sesbania green manure (SGM), mungbean residue (MBR), SGM?+?WR and MBR?+?WR increased organic C over the initial level by 0.071, 0.100, 0.163 and 0.133%, respectively, kjeldahl-N by 0.001, 0.004, 0.001 and 0.005% respectively, available P by 2.7, 5.0, 8.5 and 3.2?kg ha???1, respectively and available K by 35, 5, 92 and 12?kg ha???1, respectively in 2 years. As compared with no residue control, incorporation of WR increased organic C by 0.036?–?0.102%, kjeldahl-N by 0.002?–?0.007% and available K by 23?–?45?kg ha?1, whereas incorporation of SGM and MBR increased organic C by 0.082?–?0.132 and 0.103?–?0.161%, respectively, kjeldahl-N by 0.009?–?0.023 and 0.005?–?0.013%, respectively and available K by 5?–?71 and 4?–?45?kg ha???1, respectively. Incorporation of WR with SGM and MBR was more effective and increased organic C by 0.121?–?0.224 and 0.125?–?0.194%, respectively, kjeldahl-N by 0.005?–?0.029 and 0.010?–?0.021%, respectively and available K content by 23?–?128 and 11?–?116?kg ha???1. Nitrogen application to rice also increased organic C, kjeldahl-N, available P and available K content in soil and also increased effects of crop residues. Crop residues had no significant effect on available P content in soil. Incorporation of WR with SGM and MBR with adequate fertilizer-N is, thus, recommended for building up organic C, kjeldahl-N and available K content in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号