首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice is the staple food for nearly 40% of the world's population. In Malawi, rice is ranked second only to maize as a cereal food crop. In rainfed areas of Malawi, grain yields typically average 1.0–1:5 t ha‐1 while potential yield is 4–5 t ha1. To bridge the gap between current and potential yields, several novel nutrient management systems were studied. Many research reports indicate that rice responds to silicon (Si) application as well as to nitrogen (N), phosphorus (P), and potassium (K) which are commonly applied. Rice crop residues (straws and hulls) are rich in Si and K, but are not utilized currently in rice production. The effect of rice‐hull ash, rice straw, and method of N application (prilled or briquetted urea) on a transplanted rice crop was studied through field experiments in Malawi during 1995 and 1996. Application of urea in briquette form increased rice grain yield by 1056 and 122 kg ha‐1 compared to prilled urea in the 1995 winter and 1996 summer experiments, respectively. However in the 1996 winter experiment, prilled urea was superior to urea briquette and increased the rice grain yield by 307 kg ha1. Incorporation of rice straw significantly increased rice grain yields over the control in three consecutive experiments. Rice‐hull ash alone increased the rice grain yields in all three experiments up to 12%; however, the increase was not statistically significant. The combination of rice straw and rice‐hull ash along with optimum N rates (60 kg ha‐1) increased the rice grain yields significantly in 1996 winter season but the increase was not significant in the other two experiments.  相似文献   

2.
Alternative N fertiliser management strategies are needed to increase N-use efficiency in wetland rice (Oryza sativa L.). In the wet season of 1993–1994, field experiments were conducted to evaluate the band placement of urea solution in comparison with broadcast prilled urea, neem-coated urea, or point-placement of urea supergranules. Both grain yield and N-use efficiency were higher with band placement of urea solution (50 or 100 kg N ha-1) compared to a conventional split application of prilled urea at 100 kg N ha-1. The total 15N recovery was 58.7 and 51.7% with band placement of urea solution at 50 and 100 kg N ha-1, respectively, compared with 47.8% for neem-coated urea and 28.5% for a conventional split application of prilled urea. Current address: Training Division, KVK, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India Pin 641 003  相似文献   

3.
Nitrogen (N) and phosphorus (P) deficiencies are key constraints in rainfed lowland rice (Oryza sativa L.) production systems of Cambodia. Only small amounts of mineral N and P or of organic amendment are annually applied to a single crop of rainfed lowland rice by smallholder farmers. The integration of leguminous crops in the pre‐rice cropping niche can contribute to diversify the production, supply of C and N, and contribute to soil fertility improvement for the subsequent crop of rice. However, the performance of leguminous crops is restricted even more than that of rice by low available soil P. An alternative strategy involves the application of mineral P that is destined to the rice crop already to the legume. This P supply is likely to stimulate legume growth and biological N2 fixation, thus enhancing C and N inputs and recycling N and P upon legume residue incorporation. Rotation experiments were conducted in farmers' fields in 2013–2014 to assess the effects of P management on biomass accumulation and N2 fixation (δ15N) by mungbean (Vigna radiata L.) and possible carry‐over effects on rice in two contrasting representative soils (highly infertile and moderately fertile sandy Fluvisol). In the traditional system (no legume), unamended lowland rice (no N, + 10 kg P ha?1) yielded 2.8 and 4.0 t ha?1, which increased to 3.5 and 4.7 t ha?1 with the application of 25 kg ha?1 of urea‐N in the infertile and the moderately fertile soil, respectively. The integration of mungbean as a green manure contributed up to 9 kg of biologically fixed N (17% Nfda), increasing rice yields only moderately to 3.5–4.6 t ha?1. However, applying P to mungbean stimulated legume growth and enhanced the BNF contribution up to 21 kg N ha?1 (36% Nfda). Rice yields resulting from legume residue incorporation (“green manure use”–all residues returned and “grain legume use”–only stover returned) increased to 4.2 and 4.9 t ha?1 in the infertile and moderately fertile soil, respectively. The “forage legume use” (all above‐ground residues removed) provided no yield effect. In general, legume residue incorporation was more beneficial in the infertile than in the moderately fertile soil. We conclude that the inclusion of mungbean into the prevailing low‐input rainfed production systems of Cambodia can increase rice yield, provided that small amounts of P are applied to the legume. Differences in the attributes of the two major soil types in the region require a site‐specific targeting of the suggested legume and P management strategies, with largest benefits likely to accrue on infertile soils.  相似文献   

4.
The nitrogen (N) fertilizer-use efficiency (20–50%) is low in rice fields in India. The neem-oil coated urea can increase N-use efficiency in lowland rice, but the desirable thickness of neem-oil coating onto urea is not known yet. Therefore, field experiments were conducted during kharif (rainy) season years 2004 and 2005 at the Research Farm of Indian Agricultural Research Institute, New Delhi to know the suitable thickness of neem-oil coating on prilled urea (PU) for increased N-use efficiency and yield. The treatments comprised of twelve combinations of four N sources (PU coated with neem-oil thickness of 0, 500, 1000 and 2000 mg kg?1 PU) and three N levels (50, 100, and 150 kg N ha?1) plus a no-N control. Prilled urea (PU) refers to the common urea available commercially in prills, which is different from urea super granules. Application of urea coated with neem-oil thickness of 1000 mg kg?1 PU resulted in significantly higher growth, yield parameters, grain yield, N uptake, and efficiency of aromatic rice (Oryza sativa L.) over uncoated PU. Nitrogen application at 122 kg ha?1 was optimum for increased yield of rice. Nitrogen-use efficiency decreased significantly and substantially with each successive increase in levels of N from 50 to 150 kg ha?1.  相似文献   

5.
Summary A field trial was set up to examine the effect of green manuring, blue-green algae, and neem-cake-coated urea on a rice crop. Summer green manuring using Sesbania aculeata increased the crop yield. Inoculation of blue-green algae increased the rice grain yield when 60 kg N ha-1 was applied as prilled urea, but the increase in grain yield was greater when 60 kg N ha-1 was applied as neem-cake-coated urea. The results of the present study show that applications of green manure, neem-cake-coated urea, and blue-green algae are complementary and that the three treatments can be used together in the rice ecosystem. The green manure and the fertilizer treatments had no effect on the algal flora of the soil.  相似文献   

6.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

7.
J. O. AZEEZ 《土壤圈》2009,19(5):654-662
Low soil nitrogen (N) and weed infestations are some of the major constraints to maize production in Nigeria.A split-split plot experiment in a randomized complete block design with three replicates was established at two sites with different agroecological zones,Ikenne (Typic Paleudalf) and Shika (Typic Tropaquept),in Nigeria in 2002 and 2003 rainy seasons to investigate the responses of four maize genotypes (Oba super II,Low N pool C2,TZB-SR,and ACR 8328 BN C7) to N fertilizer applied at four rates,0,30,60,and 90 kg N ha-1,and three weed pressure treatments,no weed pressure (weekly weeding),low weed pressure (inter-row weekly weeding),and high weed pressure (no weeding throughout the growing season).Growth and yield parameters of maize and weeds were taken at flwering and harvest.The results indicated that there was a significant reduction in maize leaf area,leaf area index,and photosynthetically active radiation due to weed interference at both sites.The application of nitrogen at 90 kg N ha-1 significantly increased maize leaf area.Reductions in maize growth and yield at flowering and harvest were significant due to weed interference at both Ikenne and Shika,thus showing that the reductions in maize growth and yield due to weed interference were not ecological zone specific even though weed species and their seed banks may differ.Ameliorative management options could thus be the same in the two agroecological zones.Application of 90 kg N ha-1 led to a significant increase in maize grain yield at Shika while there was no fertilizer effect at Ikenne on grain yield.There was no significant difference between 60 and 90 kg N ha-1,suggesting that 60 kg N ha-1 could be a possible replacement for the higher fertilizer rate at least for the identified maize genotypes.Low weed pressure treatment led to 26% and 35% reductions in maize grain yield at Ikenne and Shika,respectively,while 22% and 51 % reductions,respectively,were observed due to high weed pressure.Generally,maize grain yield was higher at Ikenne than Shika.The maize genotypes Low N pool C2 and ACR 8328 BN C7 performed better than the other genotypes at Ikenne while the maize genotype Oba super II had the best performance at harvest at Shika.Application of nitrogen increased weed biomass at flowering at Ikenne.The maize grain yield was highest in the N-efficient genotypes,Oba super II and Low N pool C2;the susceptible genotype TZB-SR had the least yield at Shika.There existed a negative and significant correlation between maize grain yield and weed biomass at both sites.  相似文献   

8.
The rice–wheat cropping system (RWCS), producing about 5–10 Mg ha–1 y–1 of grain, is the backbone of food‐crop production in South‐East Asia. However, this system shows signs of fatigue as indicated by declining yields, negative nitrogen (N) balances, and reduced responses to applied fertilizer at some research centers. The return of rice and wheat residues can recycle up to 20%–30% of the N absorbed by the crops. However, their wide C : N ratio can temporarily immobilize native and applied N. To overcome this immobilization, wheat‐straw application was supplemented with the incorporation of Sesbania green manure and mungbean residues, and their effects on productivity, agronomic N efficiency, and system's apparent N balances were studied. Combining the application of wheat straw with Sesbania green manure or mungbean residues increased cereal grain yield and agronomic N efficiency and improved the generally negative apparent N balances. The combined use of wheat straw and mungbean produced an additional 0.5–0.6 t ha–1 protein‐rich grain and thus appears to be the most promising residue‐management option for rice–wheat cropping systems in South Asia, provided that the transition cropping season between wheat harvest and rice transplanting is long enough.  相似文献   

9.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

10.
Wetland rice agriculture is the major anthropogenic source of methane, an important greenhouse gas. Methane emissions are less when ammonium sulfate (AS) rather than urea is the nitrogen (N) source. However, an agronomic advantage of AS over urea has not been established. The objectives of this study were: (i) to compare the effectiveness of AS, urea, and urea plus elemental sulfur (S) as sources of N in flooded rice culture, (ii) to compare fertilizer recovery of each source of N from application at preflood (PF) and panicle initiation (PI), and (iii) to determine if there is a response to S by rice grown on a soil with a less than optimum level of available S. ‘Cypress’ rice was . drill‐seeded in a Crowley silt loam soil (fine, montmorillonitic, thermic Typic Albaqualf) of 7.25 to 10.75 mg S kg‐1. Ammonium sulfate, urea, or urea plus S was applied in split applications of 101 kg N ha‐l PF and 50 kg N ha‐1 PI. Microplots with retainers and 15N‐labeled N were used. Unlabeled N was used in field plots. Microplots were harvested at 50% heading, while field plots were harvested at maturity. Dry matter and total N accumulation at 50% heading and at maturity were similar regardless of N source. Grain dry matter yields were 8.54, 8.47, and 8.79 Mg ha‐1 for AS, urea, and urea plus S treatments, respectively. Greater N recovery was generally found from N application at PI than at PF, but this was not reflected by an increase in grain yield. No response to S was detected, although grain yields were slightly higher when S‐containing fertilizers were used. Ammonium sulfate and urea were equally effective for flooded rice production in Louisiana.  相似文献   

11.
Irrigated rice (Oryza sativa L.) in West Africa covers about 12 % of the regional rice‐growing area, and is produced all along the agro‐ecological gradient from the forest zone to the Sahara desert margins. Spatial and temporal variability of yield gaps (i.e., difference between actual and potential yield) were determined to set priorities for research and target technologies. On‐farm trials were conducted on 191 irrigated lowland fields in the humid forest, the savanna and the Sahel. Farmers' yields were compared with those of super‐imposed treatments of improved fertilization and weed management. Farmers' yields varied between 0.2 and 8.7 Mg ha‐1, with average yields of 3.4 Mg ha‐1 (Guinea savanna), 3.6 Mg ha‐1 (humid forest), 3.9 Mg ha‐1 (Sahel), and 5.1 Mg ha‐1 (Sudan savanna). Simulated potential yields increased from 7 Mg ha‐1 in the forest to about 10 Mg ha‐1 in the Sahel. Accordingly, yield gaps were large, ranging from 3.2 to 5.9 Mg ha‐1. Researcher weed control in the Sahel gave grain yield increases of about 1.0 Mg ha‐1. Improved weed and N fertilization management increased yields by 1 to 2 Mg ha‐1 in the forest and Guinea savanna sites. A share of 57‐80 % of the yield gap could not be accounted for. Improving weed control is likely to have the highest pay‐off in the Sahel while improved management of fertilizer N will be most beneficial in the forest and savanna environments.  相似文献   

12.
中国水稻不同产量、品种和种植制度下氮需求量变异状况   总被引:2,自引:0,他引:2  
Better understanding of the factors that influence crop nitrogen(N) requirement plays an important role in improving regional N recommendations for rice(Oryza sativa L.) production. We collected data from 1 280 plot-level measurements in different reaches of the Yangtze River, China to determine which factors contributed to variability in N requirement in rice. Yield, variety, and cropping system were significantly related to N requirement. The N requirement remained consistent at about 18.6 kg N Mg~(-1)grain as grain yield increased from 7 to 9 Mg ha~(-1), then decreased to 18.1, 16.9, and 15.9 kg N Mg~(-1)grain as yield increased to 9–10, 10–11, and 11 Mg ha~(-1), respectively. The decreased requirement for N with increasing yield was attributable to declining N concentrations in grain and straw and increased harvest index. Super rice variety had lower N requirement(17.7 kg N Mg~(-1)grain) than ordinary inbred and hybrid varieties(18.5 and 18.3 kg N Mg~(-1)grain, respectively), which was a result of lower grain and straw N concentrations of super rice. The N requirements were 19.2, 17.8, and 17.5 kg N Mg~(-1)grain for early, middle, and late rice cropping systems, respectively. In conclusion, the rice N requirement was affected by multiple factors, including yield, variety, and cropping system, all of which should be considered when planning for optimal N management.  相似文献   

13.
ABSTRACT

In the developing world, fertilizer application is commonly achieved by broadcasting nutrients to the soil surface without incorporation. A commonly used nitrogen (N) source is urea and if not incorporated, can sustain N losses via ammonia volatilization and lower crop yields. This study evaluated the effect of planting, N rate and application methods on maize (Zea mays L.) grain yield. An experiment with a randomized complete block design (nine treatments and three replications) was established in 2013 and 2018 in Oklahoma. The planting methods included; farmer practice (FP), Oklahoma State University hand planter (OSU-HP), and John Deere (JD) mechanical planter. Side-dress N application methods included; dribble surface band (DSB), broadcast (BR), and OSU-HP. Nitrogen was applied at the rate of 30 and 60 kg ha?1 as urea and UAN at V8 growth stage. On average, planting and applying N at 60 kg ha?1 using OSU-HP resulted in the highest yield (11.4 Mg ha?1). This exceeded check plot yield (5.59 Mg ha?1) by 104%. Nitrogen application improved grain yield by over 57% when compared to the 0-N check (8.77 Mg ha?1). Mid-season N placement below the soil surface using OSU-HP makes it a suitable alternative to improve grain yield.  相似文献   

14.
Abstract

Limited information is available regarding the utilization and loss of fertilizer nitrogen (N) applied to intensively managed upland rice. Effects of N fertilization on upland rice were conducted as N0 (no N applied), N225 (225 kg N · ha?1), N300 (300 kg N · ha?1), and N375 (375 kg N · ha?1) in pot experiments. 15N‐labeled techniques were used in basal and topdressing N fertilizations. Results showed with the increase of N quantity applied, tiller, panicle numbers per pot, and spikelet number per panicle increased significantly (P<0.05). Chlorophyll b content of N225 and N300 were significantly higher than N0 (P<0.05), and net photosynthetic rate (Pn) of N300 increased significantly compared with N0 and N225. Under basal fertilization, N use efficiency (NUE) of root, stem, leaf, and grain in N300 was the highest. The NUE and loss rate ranged from 23.3% to 30.3% and 62.4% to 73.8%, respectively, under basal fertilization. They varied from 16.5% to 27.5% and 70.7% to 80.4%, respectively, under topdressing fertilization. The highest NUE was observed in N300 under basal fertilization. As increased quantities of N were applied, Pn and biological characteristics improved, thus crop yield of upland rice increased. Grain yield of N300 and N375 were significantly higher than that of N0 and N225 (P<0.01); however, there was no significant difference between them. Therefore, N fertilization with medium applied quantity under basal fertilization will facilitate growing, photosynthesis, and grain yield increase of upland rice.  相似文献   

15.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

16.
Farmers in the inland valleys of northern Ghana are challenged with nitrogen (N) deficiency as a major production constraint of rainfed lowland rice (Oryza sativa L.). With extremely low use of external inputs, there is a need to efficiently use the systems' internal resources such as native soil N. Largest soil nitrate‐N losses are expected to occur during the transition between the dry and wet season (DWT) when the soil aeration status changes from aerobic to anaerobic conditions. Technical options avoiding the build‐up of nitrate are expected to reduce N losses and may thus enhance the yield of rice. A field study in the moist savanna zone of Ghana assessed the in situ mineralization of native soil N, the contribution of nitrate to the valley bottom by sub‐surface flow from adjacent slopes, and the effects of crop and land management options during DWT on seasonal soil Nmin dynamics and the yield of lowland rice. Large amounts of nitrate accumulated during DWT with a peak of 58 kg ha−1 in lowland soils, of which 32 kg ha−1 were contributed from the adjacent upland slope. Most of this nitrate disappeared at the onset of the wet season, possibly by leaching and denitrification upon soil flooding. While the incorporation of rice straw (temporary immobilization of soil N in the microbial biomass) had little effect on soil N conservation, growing a crop during DWT conserved 22–27 kg of soil N ha−1 in the biomass and Crotalaria juncea supplied an additional 43 kg N ha−1 from biological N2 fixation. Farmers' practice of bare fallow during DWT resulted in the lowest rice grain yield that increased from 1.3 (2.2) to 3.9 t ha−1 in case of the transition‐season legume. Growing a pre‐rice legume during DWT appears a promising option to manage N and increase lowland rice yields in the inland valleys of northern Ghana.  相似文献   

17.
Controlled-release urea (CRU) and its placement method in rice production were investigated during 2007 and 2008 seasons. Controlled-release urea was applied at 62.5, 125, and 187.5 kg nitrogen (N) ha?1, and the urea was 187.5 kg N ha?1. All the CRU treatments were applied to the nursery beds once, and they were brought into the paddy field during transplanting, while the urea treatment was split into three applications from the plowing to the harvest. The results showed that rice seedlings with CRUs germinated and grow well and there was no salt damage at the nursery stage. The CRU treatment with 125 kg N ha?1 had 33% less N than urea treatment (187.50 kg N ha?1), but it produced significantly higher grain and straw yields, higher total N uptake and total apparent N uptake efficiency. In addition, all the CRU treatments effectively decreased floodwater ammonium (NH4 +)-N and nitrate (NO3 ?)-N concentrations, pH, and N runoff.  相似文献   

18.
A long-term field experiment was conducted at the research farm of the All-India Coordinated Research Project for Dryland Agriculture, Phulbani, Orissa, India, from 2001 to 2006 to identify the best integrated nutrient-use treatments for ensuring greater productivity, profitability, sustainability, and improved soil quality in pigeon pea + rice (two rows of pigeon pea followed by five rows of rice alternately) intercropping system. In all, nine treatments, eight comprising integrated nutrient-use practices, chemical fertilizer (CF), farmyard manure (FYM), and green leaf manure (GLM) to supply nitrogen (N) at 45 kg N ha–1 and one farmer's practice equivalent to 25 kg N ha–1 (FYM 5 t ha–1), were tested on a long-term basis. Results of the study revealed that 20 kg N ha–1 (FYM) + 25 kg N (CF) gave maximum mean rice grain yield of 1.52 t ha–1, followed by 20 kg N (GLM) + 25 kg N (urea) with grain yield of 1.51 t ha–1. In the case of pigeon pea, 30 kg N (FYM) +15 kg N (urea) gave maximum pigeon pea grain yield of 0.94 t ha–1, which was 34% greater than the sole application of chemical fertilizer. Pigeon pea grain yield tended to increase with increasing proportion of organic N in FYM + CF or GLM + CF combinations. Application of 20 kg N (FYM) + 25 kg N (urea) recorded maximum mean rice equivalent yield of 3.59 t ha–1 and sustainability yield index of 59%. While studying profitability, application of 20 kg N (FYM) + 25 kg N (CF) gave maximum net returns of US$168.94 ha–1. Impact of treatments on soil quality as assessed in terms of relative soil quality indices (RSQI) increased with increasing proportion of organic sources of N. Using an innovative and new approach, an index of integrated productivity–sustainability–profitability–soil quality performance index (I P,S,Pr,SQ) was computed to make a precise evaluation of the treatments. Based on this index, the order of performance of the treatments was T6 [20 N (FYM) + 25 N (CF)] (7.7) > T7 [30 N (FYM) + 15 N (CF) (6.9)] > T3 [20 N (GL) + 25 N (CF)] (6.8) > T5 [10 N (FYM) + 35 N (CF) (6.6)] > T9 [GL] (6.5) > T8 [CF] (6.2) > T4 [30 N (GL) + 15 N (CF)] (6.0) > T2 [10 N (GL) + 35 N (CF)] (5.7) > T1 [FYM at 5 t ha–1] (4.1). Thus, the results and the methodology adopted in this study using long-term data would be very useful to researchers, farmers, land managers, and other stakeholders not only in India but also across the world under similar climatic and edaphic situations.  相似文献   

19.
Dry direct-seeded aerobic rice (DSR) is an emerging attractive alternative to traditional puddled transplanted rice (PTR) production system for reducing labour and irrigation water requirements in the Indo-Gangetic plains (IGP) of India. The fertilizer N requirement of DSR grown with alternate wetting and drying water management may differ from that of PTR grown under continuous flooding due to differences in N dynamics in the soil/water system and crop growth patterns. Limited studies have been conducted on optimizing N management and application schedule for enhanced N use efficiency in DSR. Therefore, field experiments were conducted over 3 years in NW India to evaluate the effects of N rate and timing of its application on crop performance and N use efficiency. Interaction effects of four N rates (0, 120, 150, and 180 kg ha?1) as urea and four schedules of N application on yield and N use efficiency were evaluated in DSR. The N schedules included N application in three equal split doses (0, 35 and 63, and 14, 35 and 63 days after sowing, DAS) and four equal split doses (0, 28, 49 and 70; 14, 28, 49 and 70 DAS). There was no significant interaction between N rate and schedules on grain yield. Significant response to fertilizer N was observed at 120 kg N ha?1 and economic optimum dose for three equal split doses and skipping N at sowing was 130 kg N ha?1. Highest mean grain yield of 6.60 t ha?1 was obtained when N was applied in three equal split doses at 14, 35 and 63 DAS which was about 8.5% higher compared with N applied in four equal split doses at 14, 28, 49 and 70 DAS. Under the best N application schedule, agronomic N use efficiency (26 kg grain kg?1), recovery efficiency (49%) and physiological efficiency (53 kg kg?1) were comparable to the values reported in Asia for PTR. Results from our study will help to achieve high yields and N use efficiency in DSR to replace resource intensive PTR.  相似文献   

20.
Biochar is a co-product of pyrolysis. To find the effects of biochar on crop production, a field study was conducted in 2007, 2008, and 2009. Treatments were arranged in a split-plot design. The main plot treatments were biochar at rates of 0, 4.5, 18 Mg ha?1. Sub-plot treatments were nitrogen (N) rates of 0, 56, 112, 224 kg N ha?1 as urea (46–0–0). These treatments were applied to a continuous corn cropping system. Soil samples were planned to be taken during the first eight weeks of the growing season and after harvest to measure ammonium–N (NH4 +–N) and nitrate–N (NO3 ?–N). Nitrogen in the plant and grain was measured along with grain yield and plant biomass. There was no difference in the yield due to the addition of biochar or the interaction of biochar and N fertilizer, but there were differences due to the N fertilizer alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号