首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
普通小麦抗条锈新种质—体克2号的抗性遗传分析   总被引:1,自引:0,他引:1  
对普通小麦抗条锈新种质—体克2号进行了遗传学分析和RAPD标记研究。结果表明,体克2号对条中32号生理小种的的抗性是由1对显性基因控制的。RAPD分析筛选出重复性强、在抗病亲本和抗性基因池稳定出现的特异DNA片段2个,即引物S369的扩增片段和引物S1397的扩增片段,其长度分别约为770bp和1400bp。利用Mapmaker3.0对引物S369扩增出来的特异片段与目的基因的遗传连锁性进行分析,该多态性差异与目的基因的连锁距离为10.4cM。  相似文献   

2.
与黄瓜抗黑星病相关基因紧密连锁的SSR标记   总被引:3,自引:0,他引:3  
本研究以黄瓜抗黑星病母本Q6和感黑星病父本F51及其F2代分离群体为试材,采用BSA法和SSR技术建立了对黑星病的抗病组和感病组,SSR引物CSWCTT02D在抗感组间表现多态性,且呈共显性.经162个F2单株验证,在高抗单株和高感单株中分别仅扩增出246 bp和256 bp的特异片段,而在中间类型个体中同时扩增出了两个特异片段.连锁分析结果表明,该标记与黄瓜黑星病抗病相关基因紧密连锁,距离为3.1 cM.测序结果显示,两个片段的差异在于10个碱基的插入或缺失.  相似文献   

3.
以甘薯抗茎线虫病品种徐781和感茎线虫病品种徐薯18的杂交F1分离群体的174株单株为材料,对甘薯抗茎线虫病基因的遗传进行了分析。结果表明,徐781的抗茎线虫病为单基因控制,推测其基因型为Rrrrrr,徐薯18的基因型为rrrrrr。采用BSA-RAPD相结合的方法,筛选940条随机引物,发现10条引物在抗、感池间表现多态性。用这10条引物检测两亲本及建池单株,发现只有引物OPP03在8株抗池单株中扩增出一条在8株感池单株中所没有的特异条带,认为该标记与甘薯抗茎线虫病基因连锁。根据该标记对F1代174个单株的扩增结果,利用Mapmaker3.0软件计算遗传距离,表明该标记与抗茎线虫病基因间的遗传距离为14.2cM。将该片断回收、克隆、测序,表明其长度为878bp,该标记命名为OPP03878。根据测序结果,设计1对特异引物,进行特异性扩增,成功地将OPP03878标记转化为SCAR标记,用亲本及分离群体验证表明该分子标记稳定性好。  相似文献   

4.
红花草莓红花基因RAPD标记转化为SCAR标记   总被引:1,自引:0,他引:1  
红花草莓不但具有经济价值,还具有很高的观赏价值。本研究将3个与红花基因连锁的RAPD标记即AW65679(1031bp)、S484(620bp)与S1383(500bp)进行了克隆与核苷酸测序,并根据测序结果设计4对SCAR引物,将这4对引物对红花草莓品种粉红熊猫、白花草莓品种鬼怒甘及它们的杂交后代进行PCR扩增程序优化和鉴定,筛选出一对SCAR引物可扩增出与红花基因连锁的特异片段AW65679(1038bp),这就是与红花基因连锁的SCAR标记。SCAR标记因其稳定性好,重复性高将为草莓分子育种开辟一条新的有效途径。  相似文献   

5.
利用RAPD技术,对白粉病免疫的贵农21号与加拿大小麦Neepawa的BC1F1代100个抗感单株进行了分子标记辅助选择。利用随机引物S 2018进行RAPD分析结果表明,在抗病亲本贵农21号和回交F1代抗病单株中均扩增出特异的DNA片段,感病对照不能扩增出此带,该特异片段的分子长度约900 bp,且重复性好,稳定性好,说明该标记与贵农21的抗白粉病基因相连锁,平均选择符合率达91.86%,在其杂交后代中进行早代选择是有效的,为选育抗病小麦种质提供了有效的手段。  相似文献   

6.
与黄瓜抗枯萎病基因连锁的RAPD标记   总被引:8,自引:1,他引:7  
以黄瓜抗枯萎病亲本WIS2757和感枯萎病亲本津研2号及其F2分离群体为试材,采用分离群体分组分析法(BSA)进行了与黄瓜抗枯萎病基因连锁的分子标记研究。运用RAPD技术,利用780条RAPD引物对抗、感亲本进行筛选,其中有113条引物在两亲本之间表现多态性,但仅有引物S49在两组间多态性标记与亲本的多态性标记相同。经F2单株分析,引物S49扩增出的特异DNA片段与WIS2757抗黄瓜枯萎病基因连锁,遗传距离为14 cM。DNA标记条带大约为300 bp,定名为S49-300。  相似文献   

7.
烟草PVY抗性的遗传分析与分子标记筛选   总被引:2,自引:0,他引:2  
本文以抗马铃薯Y病毒(简称PVY)的烟草品种RY5,感病品种Coker176为亲本,构建F1、正反交F2和正反交BC1群体,苗期摩擦接种PVY的抗性遗传分析结果表明,接种后第21d群体PVY抗性数据符合孟德尔单基因隐性质量性状的遗传模型。接种后第28d群体PVY抗性数据偏离孟德尔单基因隐性质量性状的遗传模型。提取F2代群体中抗病和感病单株DNA,从多条RAPD引物和一对SCAR引物中,筛选出两个紧密连锁的分子标记。RAPD标记O12V3695与RY5的抗病基因对应的显性等位基因位点(Va)间的遗传距离为2.10cM,而SCAR标记与Va间的遗传距离为2.52cM,这两个分子标记可用于抗PVY抗性育种。  相似文献   

8.
水稻类病变坏死突变基因的RAPD标记   总被引:1,自引:0,他引:1  
中籼3037诱变得到新的类病变坏死突变体Sp1801,以粳稻品种02428为父本与其杂交构建分离群体,并利用RAPD技术对此突变相关基因进行了遗传连锁分析,引物OPI 11和OPL 03扩增的稳定的差异片段与突变性状紧密连锁,两标记与目的基因的遗传距离分别为0.6cM和5.6cM,并且两差异片段分别为556bp和944bp,因此OPI11-556和OPL03-944可以作为此突变基因的RAPD标记。序列同源性分析表明,OPI11-556与一个抗稻瘟病基因pib有高度同源性。  相似文献   

9.
辣椒抗黄瓜花叶病毒(CMV)基因的ISSR标记   总被引:1,自引:0,他引:1  
辣椒(Copicum annuum L.)抗黄瓜花叶病毒(CMV)一直是辣椒育种的主攻目标之一.本研究以辣椒抗CMV品种VC16a和感CMV品种SS69杂交的F2群体60个单株材料,通过人工接种鉴定,采用高抗单株和高感单株分别构建抗、感基因池,利用BSA法筛选了40条ISSR引物,其中引物I-34在抗感病池中扩增出450 bp多态性片段,通过F2单株验证后证明I-34450与抗CMV基因紧密连锁,其遗传距离为27.3 cM,为辣椒抗CMV分子标记辅助育种奠定了基础.  相似文献   

10.
与大白菜抗霜霉病基因连锁的分子标记研究   总被引:3,自引:0,他引:3  
【研究目的】 研究与大白菜抗霜霉病基因紧密连锁的DNA分子标记。【方法】利用高抗自交系‘660’和高感自交系‘654B’及其杂交F2群体162个单株为材料,采用构建抗、感病池,利用BSA法筛选了87对SSR引物,35对拟南芥抗霜霉病相关基因的特异引物,其中特异引物RPP13P2和RPP131-2R在抗感病亲本和抗感病池中扩增出一条多态性片段RPP13MK,利用这对引物对F2代单株构建的分享群体进行扩增,验证标记RPP13MK与目的基因的连锁关系,Mapmaker 3.0软件计算遗传距离。【结果】通过F2单株验证后证明RPP13MK与抗霜霉病基因紧密连锁,其遗传距离为5.6 cM。【结论】获得了一个与大白菜抗霜霉病基因紧密连锁的分子标记RPP13MK。  相似文献   

11.
水稻苯达松敏感致死基因(ben)的电子杂交定位和基因预测   总被引:3,自引:1,他引:2  
杨剑波  向太和  李莉  王永杰  黄大年 《作物学报》2004,30(11):1152-1158
来自水稻突变体的苯达松敏感致死基因(ben)能够作为一种除草剂筛选标志用于杂交水稻种子的安全生产。本研究利用我们已得到的与Ben/ben基因紧密连锁的两个RAPD标记(OPG18/972,OPG18/943)以及与该标记高度同源的跨叠克隆Contig10968(来自中国水稻基因组框架序列,全长8 273 bp)的序列信息,沿标记的两端设计新的PCR引物  相似文献   

12.
粳稻品系Y98149是从离子束诱变的后代中获得的显性半矮秆突变体,与野生型Y98148是一对株高近等基因系。将已经获得的3个与水稻显性半矮秆基因紧密连锁的RAPD标记分别克隆、测序,根据测序结果设计了3对特异性PCR引物,成功地将RAPD标记S1041525、S1076549和S1272403转化成更稳定的SCAR标记SCS1041498、SCS1076510和SCS1272388。通过Y98148×Y98149的F2代分离群体的分析,这3个SCAR标记与显性半矮秆基因的遗传距离分别为12.6 cM、7.5 cM和16.3 cM, 且位于基因的同一侧。序列同源性比较表明,标记S1272403为单拷贝,其核苷酸序列与水稻第7染色体上两个BAC克隆B1249D05(AP006451)和OJ1212-C12(AP005604)同源性为99%,B1249D05与OJ1212-C12有23 kb的重叠区域,标记S1272403位于这个重叠区域,据此初步将显性半矮秆基因定位,为进一步精确定位和图位克隆奠定了基础。  相似文献   

13.
RAPD and SCAR markers linked to the sex expression locus M in asparagus   总被引:13,自引:0,他引:13  
Bulk segregant analysis (BSA), random amplified polymorphic DNA (RAPD) and sequence characterized amplified region (SCAR) methods were used to map molecular markers to the sex locus M of asparagus. Two parents, A19 (male, Mm) and MW25 (female, mm), and 63 progeny were used for the study. Two DNA bulks, one male and one female, were made by pooling equal amounts of DNA from 10 randomly selected progeny of each sex type. A total of 760 arbitrary decamer oligonucleotide primers were used for RAPD analysis. Primer OPC15 produced two RAPD markers, OPC15-98 and OPC15-30, both of which were linked to the M locus at a distance of 1.6 cM. Subsequently, amplified RAPD fragment OPC15-98 was cloned and sequenced. The sequence was then used to design flanking 24-mer oligonucleotide SCAR primers SCC15-1 and SCC15-2. Both of these SCAR primers amplified a single 980 bp fragment; the same size as the cloned RAPD fragment. However, the SCAR marker was dominant as was the original OPC15-98 band from which it was derived. These RAPD and SCAR markers could be used for scoring male and female progeny in the mapping population, but were not found to be applicable to other asparagus germplasm studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Anthracnose, one of the destructive foliar diseases of sorghum growing in warm humid regions, is incited by the fungus Colletotrichum graminicola.The inheritance of anthracnose resistance was studied using the parental cultivars of Sorghum bicolor (L.) Moench, HC 136 (susceptible to anthracnose) and G 73 (anthracnose resistant). The F1 and F2 plants were inoculated with the local isolates of C. graminicola cultures. The F2 plants showed a segregation ratio of 3 (susceptible): 1(resistant) indicating that the locus for resistance to anthracnose in sorghum accession G 73 segregates as a recessive trait in a cross to susceptible cultivar HC 136. RAPD (random amplified polymorphic DNA) marker OPJ 011437 was identified as marker closely linked to anthracnose resistance gene in sorghum by bulked segregant analysis of HC 136 × G73 derived recombinant inbred lines (RILs) of sorghum. A total of 84 random decamer primers were used to screen polymorphism among the parental genotypes. Among these, only 24 primers were polymorphic. On bulked segregant analysis, primer OPJ 01 amplified a 1437 bp fragment only in resistant parent G 73 and resistant bulk. The marker OPJ 011437 was cloned and sequenced. The sequence of RAPD marker OPJ 011437 was used to generate specific markers called sequence characterized amplified regions (SCARs). A pair of SCAR markers SCJ 01-1 and SCJ 01-2 was developed using Mac Vector program. SCAR amplification of resistant and susceptible parents along with their respective bulks and RILs confirmed that SCAR marker SCJ 01 is at the same loci as that of RAPD marker OPJ 011437 and hence, is linked to anthracnose resistance gene. Resistant parent G 73 and resistant bulk amplified single specific band on PCR amplification using SCAR primer pairs. The RAPD marker OPJ 011437 was mapped at a distance of 3.26 cM apart from the locus governing anthracnose resistance on the sorghum genetic map by the segregation analysis of the RILs. Using BLAST program, it was found that the marker showed 100 per cent alignment with the contig{_}3966 located on the longer arm of chromosome 8 of sorghum genome. Therefore, these identified RAPD and SCAR markers can be used in the resistance-breeding program of sorghum anthracnose by marker-assisted selection.An erratum to this article can be found at  相似文献   

15.
An introgression line derived from an interspecific cross between Oryzasativa and Oryza officinalis, IR54741-3-21-22 was found to beresistant to an Indian biotype of brown planthopper (BPH). Genetic analysisof 95 F3 progeny rows of a cross between the resistant lineIR54741-3-21-22 and a BPH susceptible line revealed that resistance wascontrolled by a single dominant gene. A comprehensive RAPD analysisusing 275 decamer primers revealed a low level of (7.1%) polymorphismbetween the parents.RAPD polymorphisms were either co-dominant (6.9%), dominant forresistant parental fragments (9.1%) or dominant for susceptible parentalfragments (11.6%). Of the 19 co-dominant markers, one primer,OPA16, amplified a resistant parental band in the resistant bulk and asusceptible parental band in the susceptible bulk by bulked segregantanalysis. RAPD analysis of individual F2 plants with the primerOPA16 showed marker-phenotype co-segregation for all, with only onerecombinant being identified. The linkage between the RAPD markerOPA16938 and the BPH resistance gene was 0.52 cM in couplingphase. The 938 bp RAPD amplicon was cloned and used as a probe on122 Cla I digested doubled haploid (DH) plants from aIR64xAzucena mapping population for RFLP inheritance analysis and wasmapped onto rice chromosome 11. The OPA16938 RAPD markercould be used in a cost effective way for marker-assisted selection of BPHresistant rice genotypes in rice breeding programs.  相似文献   

16.
以抗病自交系K01和感病自交系K02杂交后自交所得的F2群体为材料,采用分离群体分析法筛选与南瓜抗CMV基因连锁的RAPD分子标记。通过520个随机引物和310组双引物的RAPD扩增分析,共找到了2个与南瓜抗CMV亲本K01中的抗病基因相连锁的分子标记S4391400和S19 S345600。这2个标记与K01的抗病基因的重组率分别为7.5%和11.8%,遗传距离分别为7.1和11.7 cM。  相似文献   

17.
There is an urgent need for early sex identification to support field planting in Ginkgo biloba L., due to the different economic and medicinal values between male and female trees. An easy, rapid and reliable molecular method for sex type determination of G. biloba was reported in the paper. Random amplification of polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) were used to search for specific molecular markers linked to the sex locus. A total of 48 primers were used for screening of specific RAPD markers in six male and three female samples. Only one primer, S10, showed different amplification band patterns associated with sex types. Then the sex-specific bands, S10-BandA and S10-BandB, were cloned and sequenced. Based on the sequences two pairs of SCAR primers, GBA and GBB, were designed. The GBA primers amplify a single 571 bp band in male samples but not in female samples, and DNA amplification using GBB primers could generate a 688 bp band only in the female individuals. Finally, the SCAR primers were used to test 16 sex-unknown samples. SCAR primers developed in this paper can be used as effective, convenient and reliable molecular markers for sex identification in G. biloba.  相似文献   

18.
In a segregating homozygous F2 population of bread wheat involving a leaf rust resistance gene Lr28 derived from Aegilops speltoides, six randomly amplified polymorphic DNA (RAPD) markers, three each in coupling and repulsion phase were identified as linked to Lr28, mapped to a region spanning 32 cM including the locus. The F2 and F3 populations were studied in the phytotron challenged with the most virulent pathotype 77-5 of leaf rust. A coupling phase linked RAPD marker S464721 and a repulsion phase linked RAPD marker S326550 flanked the gene Lr28 by a distance of 2.4± 0.016 cM on either side. The flanking markers genetically worked as co-dominant markers when analyzed together after separate amplification in the F2 population by distinguishing the homozygotes from the heterozygotes and increased the efficiency of marker assisted selection by reducing the false positives and negatives. One of the three RAPD markers, S421640 was converted to locus specific SCAR marker SCS421640 which was further truncated by designing primers internal from both ends of the original RAPD amplicon to eliminate a non-specific amplification of nearly same size. The truncated polymorphic sequence characterized amplified region marker (TPSCAR) SCS421570 was 70 bp smaller, but resulted in a single band polymorphism specific to Lr28 resistance. The TPSCAR marker was validated for its specificity to the gene Lr28 in nine different genetic backgrounds and on 43 of the 50 Lr genes of both native and alien origin, suggesting the utility of the SCAR markers in pyramiding leaf rust resistance genes in wheat.  相似文献   

19.
Yellow mosaic disease (YMD) caused by mungbean yellow mosaic virus (MYMV) is the most important disease of mungbean, causing great yield loss. The present investigation was carried out to study the inheritance and identify molecular markers linked with MYMV resistance gene by using F1, F2 and 167 F2 : 8 recombinant inbred lines (RILs) developed from the cross ‘TM‐99‐37’ (resistant) × Mulmarada (susceptible). The F1 was susceptible, F2 segregated in 3S:1R phenotypic ratio and RILs segregated in 1S:1R ratio in the field screening indicating that the MYMV resistance gene is governed by a single recessive gene. Of the 140 RAPD primers, 45 primers showing polymorphism in parents were screened using bulked segregant analysis. Three primers amplified specific polymorphic fragments viz. OPB‐07600, OPC‐061750 and OPB‐12820. The marker OPB‐07600 was more closely linked (6.8 cM) with a MYMV resistance gene as compared to OPC‐061750 (22.8 cM) and OPB‐12820 (25.2 cM). The resistance‐specific fragment OPB‐07600 was cloned, sequenced and converted into a sequence‐characterized amplified region (SCAR) marker and validated in twenty genotypes with different genetic backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号