首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
冬季施用鸡粪和生物炭对南方稻田土壤CO2与CH4排放的影响   总被引:3,自引:1,他引:2  
生物炭的利用近年来是农田土壤固碳减排研究中的热点。本研究通过在冬季稻田养鸡,结合生物炭添加,采用箱式法结合温室气体分析仪定量测定冬季稻田和双季稻期间土壤CO_2和CH_4排放通量,分别估算冬季稻田和双季稻期间土壤CO_2和CH_4排放总量,评估生物炭和鸡粪添加对土壤碳排放的影响。结果表明,鸡粪还田处理显著提高了土壤CO_2的排放,冬季稻田和水稻生育期排放量分别达9 935.39 kg·hm~(-2)和27 756.34kg·hm~(-2),比对照增加58.7倍(P0.01)和56%(P0.05);生物炭添加处理冬季稻田和水稻生育期CO_2累积排放量比对照高12.3倍(P0.01)和41%(P0.05)。鸡粪还田处理下冬季稻田和水稻生育期稻田的CH_4排放量均显著高于其他处理;而生物碳添加对冬季稻田CH_4排放无显著影响,但显著降低了水稻生育期稻田的CH_4排放。鸡粪还田配施生物炭处理也显著提高了稻田土壤CO_2的排放。冬季稻田时,鸡粪还田配施生物炭土壤CO_2累积排放量显著高于鸡粪还田处理;而水稻生育期时,鸡粪还田配施生物炭处理下土壤CO_2累积排放量显著低于鸡粪还田处理。鸡粪还田下添加生物碳可以降低因鸡粪还田引起的CH_4排放增加的效应。总之,鸡粪原位还田显著增加了冬季稻田和水稻生育期稻田的CO_2和CH_4排放;无论是冬季稻田还是水稻生育期,生物炭的添加都降低了土壤CH_4的排放,且生物炭添加后期有抑制土壤CO_2排放的作用。因此,从更长的时间尺度来看,生物炭施入土壤有利于土壤固碳减排。  相似文献   

2.
干湿交替对新疆绿洲农田土壤CO2排放的影响   总被引:1,自引:0,他引:1  
[目的]分析不同土壤水分变化及干湿交替对土壤CO_2排放的影响,为绿洲农田土壤碳循环提供科学依据。[方法]选取新疆绿洲棉田土壤,通过室内控制模拟试验,以及用气相色谱仪分析CO_2浓度。[结果](1)与60%WFPS(土壤充水孔隙度)相比,40%WFPS对土壤CO_2排放起到了显著的抑制作用(p0.05),而80%WFPS对土壤CO_2排放无显著性影响(p0.05)。培养结束时,与60%WFPS的土壤CO_2累积排放量相比,40%WFPS的土壤CO_2累积排放量降低26%(p0.05),而80%WFPS的土壤CO_2累积排放量仅增加0.04%(p0.05)。(2)多次干湿交替循环后,干湿交替处理下的土壤CO_2累积排放量显著低于恒湿处理。在不同干旱强度处理中,重度干旱(SD)处理对土壤CO_2排放速率响应程度大于适度干旱(MD)处理,但多次干湿交替循环后,SD处理下的土壤CO_2累积排放量却显著小于MD处理。随干湿交替循环次数的增加,干湿交替对土壤CO_2排放速率的影响显著降低,特别是对土壤CO_2排放速率最高值的影响最大。[结论]在新疆绿洲棉田土壤中,干湿交替能降低土壤CO_2排放量,降低量随干旱强度的增大而增大。  相似文献   

3.
为探究外源碳氮添加对农田土壤温室气体排放的影响,以农田黑土为对象,在25℃和淹水条件下开展室内培养试验,研究外源碳(葡萄糖和乙酸)和氮(硫酸铵)添加对温室气体排放的影响。结果表明,淹水条件碳氮配施显著降低了土壤硝态氮含量,以氮肥配施葡萄糖处理效果更明显。与不施肥的对照处理相比,单施氮肥处理对CO2排放速率无显著影响;与单施氮肥处理相比,碳氮配施显著提高了CO2的排放速率,氮肥配施葡萄糖处理和氮肥配施乙酸处理的CO2累积排放量分别为单施氮肥处理的3.93和2.44倍。与不施肥的对照处理相比,单施氮肥显著增加了N2O排放速率,其累积排放量是对照处理的3.60倍;与单施氮肥处理相比,氮肥配施葡萄糖处理仅在第1天对N2O排放速率有显著促进效果,培养期间N2O累积排放量与单施氮肥处理无显著差异;氮肥配施乙酸处理对N2O排放速率的促进效果持续了5 d,其N2O累积排放量是单施氮肥处理的3.58倍。与不施肥的对照处理相比,单施...  相似文献   

4.
土地耕作后微生物量碳和水溶性有机碳的动态特征   总被引:5,自引:0,他引:5  
张磊  张磊 《水土保持学报》2008,22(2):146-150
采用野外观测与室内模拟试验相结合的方法,研究了湿地土壤和垦殖10年的农田耕作后土壤呼吸通量、微生物量碳、土壤基础呼吸、土壤qCO2值、水溶性有机碳的动态特征。研究结果表明:小叶章湿地耕作后,土壤含水量明显下降(p<0.05);土壤CO2通量在最初的1~2 d形成一个排放高峰,农田耕作土壤CO2通量一直显著高于未耕作土壤(p<0.01)。农田土壤微生物量碳含量显著低于小叶章湿地(p<0.001)。在耕作后最初的1~3 d,湿地和农田土壤微生物量碳均没有显著的变化;之后,土壤微生物量碳迅速增加,显著高于未耕作土壤。观测时间内,耕作农田土壤微生物量碳含量始终显著高于未耕作土壤(p<0.01)。垦殖10年农田土壤耕作后,对土壤水溶性有机碳含量无显著影响。湿地耕作后,土壤水溶性有机碳迅速增加。在耕作后80 d内,土壤水溶性有机碳含量显著高于未耕作土壤(p<0.01)。之后,则低于未耕作土壤。  相似文献   

5.
采用室内模拟实验,研究沼泽湿地土壤N2O排放和有机碳矿化对不同外源氮输入浓度的响应特征.整个培养期(23 d)内N2O排放量为2696.85(N0),5362.61(N1),8288.48(N2),7903.84(N3)μg/kg,处理间差异达到极显著水平(p<0.01),随氮输入量增加呈现先增加后降低的趋势,表明适当的氮输入促进土壤N2O排放,过量的氮输入则对土壤N2O排放有一定的抑制作用.各氮输入处理有机碳矿化速率在培养期内各阶段都低于对照,各氮输入处理之间差异不显著,表明氮输入降低有机碳矿化速率.氮输人对土壤微生物量碳影响不大,而土壤微生物置氮随氮输入量增大而增大.  相似文献   

6.
夏玉米农田N2O排放影响因素的模拟分析   总被引:1,自引:1,他引:0  
【目的】全球46%~52%的N2O来自农田土壤,农田土壤N2O排放的研究具有重要的环境和经济意义。量化各影响因素对夏玉米农田N2O排放的影响,可为合理减少施肥产生的N2O排放提供依据。【方法】于2012和2013年连续两年进行了夏玉米裂区田间试验。试验主区为作物处理,副区为氮肥处理(0、 150、 300、 450 kg/hm2)。采用暗箱静态法-气相色谱法测定了不同处理N2O的排放通量,比较了不同温度和降雨量条件下不同处理的N2O排放量,计算了气温、 降雨量、 氮肥管理和夏玉米吸收对夏玉米农田N2O排放的影响。【结果】温度及降雨量的变化明显影响N2O的排放。2012年和2013年气温和降雨量对夏玉米生长期间N2O总排放量的影响分别为-0.24和-0.07。随着施氮量的增加,施氮对N2O排放的影响率呈线性增加(R2 = 0.923),施氮量0、 150、 300和450 kg/hm2,对玉米田N2O排放的影响分别为0、 0.38、 1.63、 3.54。夏玉米生长吸收对N2O排放量的平均影响因子为-0.33,年际间差异不显著(P = 0.07)。在苗期、 穗期、 花粒期,夏玉米生长吸收的影响因子分别为-0.57、 -0.29和-0.13,不同生育期的影响因子差异显著(P = 0.0015)。不同施氮量下,气候条件对夏玉米农田N2O排放影响率差异不显著(P 0.05); 不同气温和降雨量,夏玉米生长吸收对N2O排放的影响在同一施氮量下差异不显著(P 0.05),且均随施氮量的增加而减小。【结论】通过量化分析,气候条件对N2O排放的影响与气温和降雨量密切相关,温度升高影响增大,反之则减小,降雨后排放显著增大。施氮对N2O排放的影响随施氮量增加线性增加。夏玉米生长吸收降低了N2O排放,且在不同生育时期的影响差异显著。综合各影响因子,低氮量条件下(≦150 kg/hm2),气候因素和玉米生长对N2O排放的影响较大,高氮量下(≧300 kg/hm2),氮肥的施用是影响N2O排放的主要因子。  相似文献   

7.
采用实验室静态培养方法,通过氮肥配施不同量纳米碳来探究纳米碳对植烟土壤氮素转化以及N_2O排放的影响。试验在等氮条件下共设置5个处理:CK,硝酸铵(N 200 mg/kg,下同);NC1,硝酸铵+纳米碳(2.5 g/kg);NC2,硝酸铵+纳米碳(5 g/kg);NC3,硝酸铵+纳米碳(10 g/kg);NC4,硝酸铵+纳米碳(15 g/kg)。结果表明:NC3和NC4处理较CK处理显著降低了土壤pH(P0.05);与CK处理相比,NC1、NC2、NC3和NC4处理在培养前期增加了土壤NH_4~+-N含量,相应降低了NO_3~–-N含量;在培养结束时,与CK处理相比,添加纳米碳处理显著降低了无机氮含量,而显著增加了CO_2累积排放量(P0.05);另外,添加纳米碳处理较CK处理增加了N_2O累积排放量,但仅NC4处理与CK处理间差异显著(P0.05),N_2O累积排放量与CO_2累积排放量呈显著正相关关系(R~2=0.50,P0.001)。可见,添加纳米碳能够降低土壤pH和无机氮含量,抑制土壤硝化作用,同时还可以提高微生物活性和增加N_2O排放量。  相似文献   

8.
不同管理措施对滨海盐渍农田土壤CO2排放及碳平衡的影响   总被引:1,自引:0,他引:1  
米迎宾  杨劲松  姚荣江  余世鹏 《土壤》2016,48(3):546-552
为探讨不同管理措施对滨海盐渍农田碳平衡的影响,本文通过玉米–小麦轮作试验,研究农田土壤的CO_2释放规律,及其农田碳收支状况。试验设计6个处理:1常规对照(CK);2有机肥常量(OF);3氮肥增施(NF);4秸秆还田(S);5有机肥加秸秆(OF+S);6免耕(NT)。研究表明,秸秆还田和有机肥的施用增加了土壤呼吸的强度,而免耕处理的CO_2平均释放量最低,不同处理下土壤呼吸总体表现为OF+SSOMNFCKNT。各处理土壤有机碳含量随着作物的收获逐渐升高,其中OF与NT增加最多,而增施氮肥处理并没有显著提高土壤的有机碳水平。各处理间的有机碳含量没有显著性差异。在两季作物种植结束后,各处理的碳输入均高于碳输出,均为碳净输入,表现出较强的碳汇特征。秸秆还田和单施有机肥的碳净输入均显著高于对照,可有效减缓因农田土壤CO_2排放而造成的全球气候变化问题。  相似文献   

9.
农田土壤有机碳气体交换与径流损失的研究大都相对孤立,对二者之间的同步观测研究较少。本文利用紫色土坡地可测壤中流的径流小区,开展了不同施肥处理下紫色土农田土壤有机碳土-气交换和土-水界面迁移过程的同步观测试验。试验处理包括:无肥对照(CK)、常规氮磷钾(NPK)、猪厩肥配施氮磷钾(OMNPK)、秸秆配施氮磷钾(RSDNPK)。结果表明:1)不同施肥处理的土壤异养呼吸速率与通量均呈现:RSDNPKOMNPKNPKCK,表明施加无机肥、有机肥和秸秆还田均会增加紫色土的土壤CO_2排放,其中秸秆还田配施氮磷钾肥的CO_2排放通量为4155.87 kg(C)·hm~(-2),显著大于其他施肥处理。2)不同施肥处理的土壤有机碳径流损失通量表现为:RSDNPKOMNPKCKNPK,径流损失途径也存在差异,与CK相比, RSDNPK处理在降低紫色土泥沙损失通量的同时,显著增加了壤中流可溶性有机碳(DOC)损失通量,达8.29 kg(C)·hm~(-2),各施肥处理的壤中流DOC损失通量占径流碳损失总通量的49.82%~92.11%,说明壤中流DOC损失是紫色土有机碳径流损失的主要方式。3) RSDNPK处理的土壤有机碳损失总通量显著大于其他施肥处理, OMNPK与NPK处理的总通量没有显著差异;各施肥处理的CO_2排放通量占总通量的比例均大于99%,说明气态损失是紫色土有机碳损失的主要途径。4)本文计算了不同施肥处理的单位产量碳损失通量,将作物经济效益与生态环境负荷相结合,结果表明CK的单位产量碳损失通量显著大于其他3个施肥处理。OMNPK处理的土壤有机碳含量为5.86 g·kg~(-1),大于NPK处理,说明施加有机肥有利于土壤有机碳的积累,因此在紫色土地区可以优先考虑施加有机肥配施氮磷钾肥。  相似文献   

10.
《土壤通报》2017,(5):1218-1225
为了进一步认识水稻秸秆还田后土壤有机碳固定机制,以浙江两种典型水稻土淡涂泥、青紫泥为研究对象,并以不加秸秆为对照,研究秸秆施用下土壤溶解性有机碳(Dissolved Organic Carbon,DOC)含量以及CO_2产生速率的动态变化,以及秸秆分解产生DOC在土壤中的吸附作用。结果表明,添加秸杆显著增加了土壤CO_2排放,总矿化碳量表现为10%>5%>2%>CK;土壤CO_2产生速率的变化与DOC含量变化具有高度一致性,都表现为先快速上升-急剧下降-缓慢下降-趋于稳定的变化模式,两者呈显著正相关(P<0.01),但在石英砂处理中两者则无明显相关性。DOC吸附实验表明随着秸秆分解时间延长,所产生的DOC在土壤中的吸附作用增强。pH和本底DOC较低的青紫泥对DOC具有更强的吸附作用,其CO_2排放速率和总矿化碳量均显著低于淡涂泥,青紫泥更有利于秸秆还田有机碳的保留和稳定。该结果表明秸秆分解前期产生DOC主要以CO_2形式释放,分解后期产生DOC更倾向于土壤有机碳固定,增加土壤对DOC的吸附作用有利于土壤固碳。  相似文献   

11.
生物炭对干旱区绿洲农田土壤呼吸的影响   总被引:2,自引:0,他引:2  
为探究不同粒径秸秆生物炭添加对绿洲农田土壤CO2排放及Q10的影响,以新疆典型绿洲农田土壤灰漠土为供试材料,采用室内土柱培养的方法,研究添加>5、1~5、0.25~1和<0.25mm共4种粒径棉花秸秆生物炭和葡萄藤生物炭对农田土壤CO2释放的影响。结果表明:(1)试验周期内(0~85d),添加生物炭处理土壤呼吸速率呈先增加后降低的趋势,前10d土壤呼吸增速较高;添加生物炭的土壤呼吸速率(1.27μmol·m-2·s-1)高于不添加生物炭的对照处理(1.01μmol·m-2·s-1),棉花秸秆生物炭处理土壤呼吸速率(1.43μmol·m-2·s-1)高于添加葡萄藤生物炭处理(1.08μmol·m-2·s-1)。培养期内土壤CO2累积过程符合一级反应动力学方程,生物炭添加改变了土壤CO2潜在排放量、周转速率和半周转期。(2)添加棉花秸秆和葡萄藤两种生物炭处理与土壤CO2累积排放量(y)分别符合y=7.51x+88.53和y=2.68x+75.85的线性关系(x为生物炭粒径)。(3)添加生物炭处理土壤呼吸速率与空气温度和土壤温度显著相关,棉花秸秆生物炭处理土壤呼吸速率与温度的相关性高于葡萄藤生物炭处理,土壤温度敏感系数随粒径的减小而增加。综合土壤呼吸速率和温度敏感系数考虑,建议绿洲农田施用1~5mm中等粒径生物炭。  相似文献   

12.
[目的]探究干旱区不同降雨模式对藻结皮覆被区土壤碳释放的影响,为精确估算干旱区生态系统土壤碳释放量提供科学依据。[方法]以乌兰布和沙漠为例,通过人工增雨和改变降雨频率来模拟全球气候变化,对藻结皮覆被区土壤碳释放量进行长期野外监测。[结果]降雨能够刺激藻结皮覆被区土壤呼吸速率迅速大幅度提升,并在1 h内达到峰值,12 h左右降至较低水平。但随着干湿交替次数的不断增大,土壤再湿润后所产生的呼吸脉冲逐渐减弱,最后1次降雨与第1次相比土壤呼吸峰值降低了40%~60%。在降雨后16 h累积碳释放量、总碳释放量都随着降雨量的增大而增大,但当降雨量增大到一定程度后,其对土壤碳释放量的促进作用不再明显。就单次降雨而言,低频率、大雨量的降雨事件所引起的碳释放量明显高于高频率、小雨量的降雨事件。但总降雨量一致的情况下,则是高频率的小降雨事件所释放的总碳量最高,其次为低频率的大降雨事件,正常降雨频率下最小。[结论]气候变化所引起的降雨量增加和降雨频率的变化将会增加藻结皮覆被区的碳排放量,在预测碳收支时,也应将藻结皮的碳排放量变化作为考虑因素之一。  相似文献   

13.
新疆盐湖分布地域广泛而不均匀。盐湖生态系统碳循环是干旱区生态系统碳循环的重要组分,其动态变化对干旱区碳平衡有着重要的影响,然而目前对干旱区盐湖土壤呼吸的研究相对薄弱。为探讨盐湖沿岸不同植物群落土壤呼吸及其影响因子,以新疆达坂城盐湖为典型研究区,选取沿岸小獐毛(Aeluropus pungens)、鸢尾(Iris tectorum)、芨芨草(Achnatherum splendens)、黑果枸杞(Lycium ruthenicum Murr)植物群落土壤为主要研究对象,以周边农田撂荒地为对照,利用LI-COR 8100对达坂城盐湖沿岸4种植物群落和撂荒地土壤呼吸进行了监测,结果表明:盐湖沿岸土壤呼吸具有明显的日变化。监测时段内土壤呼吸作用均为单峰曲线,排放通量在13:00左右最高,07:00左右出现最低值。不同群落土壤呼吸速率变化范围在0.89~4.34μmol/(m~2·s)之间,撂荒地为1.77~3.48μmol/(m~2·s),表现为黑果枸杞小獐毛芨芨草撂荒地鸢尾。不同植物群落地下生物量影响土壤CO_2排放,研究区土壤呼吸日平均累计CO_2排放通量为209.28 mg/(m~2·d)。土壤呼吸速率与土壤5 cm温度呈现显著正相关(P0.01),可以解释土壤呼吸日变化的69%~78%,是决定达坂城盐湖土壤呼吸变化的主要因子。利用土壤5 cm处温度得到小獐毛、鸢尾、芨芨草、黑果枸杞、撂荒地的Q_(10)值分别为2.30、1.24、1.20、1.57、1.28,小獐毛样地土壤呼吸对温度更敏感。除撂荒地外各群落土壤呼吸与土壤湿度呈显著负相关(R~2=0.38~0.51)。该研究对进一步明确干旱区盐湖生态系统土壤呼吸变化规律和影响因素,以及对估算区域碳平衡及"碳汇"功能具有重要意义。  相似文献   

14.
[目的] 揭示中国极端干旱区甘肃省石羊河流域储水灌溉与季节性冻融叠加作用下对土壤呼吸的影响,为进一步提高极端干旱区灌溉水资源利用效率和节约灌溉水源提供理论基础和技术支撑。[方法] 按照1 199.4 m3/hm2低灌溉定额分为灌水和非灌水处理,将冻融循环分为冻结期、冻融期和解冻期3个时间段,采用LI-8100土壤碳通量全自动测量系统对各处理地块的土壤呼吸速率进行观测与分析。[结果] 极端干旱区储水灌溉在季节性冻融作用下农田生态系统土壤呼吸速率增强,土壤碳排放量增加,农田生态系统碳循环被改变,有利于作物的生长和提高粮食产量。不同土地利用方式下土壤呼吸速率对水分和温度的响应程度不同。整个冻融过程中土壤呼吸速率呈现出:解冻期>冻结期>冻融期的规律。冻结期、冻融期和解冻期3个时期的土壤CO2都表现为源,但在夜间极低温度时土壤CO2由源转化为汇。[结论] 储水灌溉调控了整个冻融期土壤呼吸的过程,改变了极端干旱区农田生态系统的碳循环。在水分与季节性冻融叠加作用下,储水灌溉地块土壤呼吸速率相对未储水地块随温度的波动更为剧烈,但与温度的变化趋势一致,水分加剧了其随温度的波动。  相似文献   

15.
东北黑土区旱作农田土壤CO2排放规律   总被引:2,自引:1,他引:1  
为研究农田土壤CO2排放规律,调控农田碳平衡,通过对东北黑土区旱作农田土壤CO2排放的定位连续观测,研究了玉米、大豆农田土壤CO2排放的季节变化规律;并估算了农田碳平衡。结果表明:1)农田土壤CO2排放通量随季节呈单峰曲线变化,7月份出现最大值;秸秆覆盖还田明显增加了农田土壤CO2排放;玉米或大豆生长发育对土壤CO2排放影响较小。2)地温的季节变化与土壤CO2排放通量季节变化规律一致,用指数方程和二次方程均可很好地模拟土壤CO2排放通量与地温之间的关系,但指数方程优于二次方程,以20cm土层地温的相关性最高,5cm土层地温的相关性最低。3)玉米、大豆农田在通常情况下为大气CO2的"汇",玉米-玉米-大豆轮作周期(3a)的碳汇年平均为4.53t/hm2,该碳汇可为固碳减排提供参考。  相似文献   

16.
长期定位施肥下黑土呼吸的变化特征及其影响因素   总被引:9,自引:5,他引:4  
阐明长期不同施肥下的土壤呼吸特征及其影响机制对黑土区固碳减排研究至关重要。该研究基于1990年开始的国家土壤肥力与肥料效益监测网站-吉林省公主岭市黑土监测基地,选取不施肥(CK)、单施氮磷钾肥(NPK)、无机肥配施低量有机肥(NPKM1)、1.5倍的无机肥配施低量有机肥(1.5(NPKM1))、无机肥配施高量有机肥(NPKM2)和无机肥配施秸秆(NPKS)6个处理,明确了长期不同施肥下土壤总呼吸和异养呼吸的季节变化特征,并分析了土壤温度、水分、微生物量碳氮、铵态氮、硝态氮与土壤呼吸和异养呼吸的关系。结果表明:长期有机无机肥配施可以显著提高土壤有机碳、全氮、土壤速效磷、有效钾的含量和土壤活性有机碳库组分含量(P0.05);与不施肥相比,长期有机无机肥配施和无机配施秸秆处理分别显著增加土壤呼吸及异养呼吸碳累积排放量56.32%~86.54%和70.01%~100.93%;根系呼吸对土壤呼吸的整体贡献为23.68%~34.30%;相关分析表明,土壤呼吸速率和异养呼吸速率与土壤温度极显著正相关(P0.01),与土壤含水率呈显著负相关(P0.01),土壤温度可以分别解释土壤呼吸和异养呼吸变化的42.79%和39.61%;土壤微生物量碳氮、土壤硝态氮均与土壤呼吸速率和异养呼吸速率极显著相关(P0.01),土壤微生物量碳氮、土壤硝态氮可以分别解释土壤呼吸和异养呼吸变化的78.42%和77.18%,58.33%和56.79%,59.29%和59.14%;土壤铵态氮虽然显著影响土壤呼吸速率(P0.05),可以解释土壤呼吸变化的5.56%,但其对异养呼吸速率的影响不显著。综合来看,微生物量碳对土壤呼吸及异养呼吸的影响最大,而土壤含水率(15%)越高则土壤呼吸越弱;无机配施秸秆处理可以提高土壤碳库组分含量,且作物生育期内土壤呼吸及异养呼吸碳累积释放量均低于等氮量下施用有机肥(NPKM1)的处理,为最佳的农田管理措施。  相似文献   

17.
通过田间试验,采用静态箱-气相色谱法测定CO2排放通量,研究红外加热增加叶面温度对土壤、大豆-土壤系统CO2排放的影响。结果表明,红外加热叶面增温2℃促进了土壤CO2的排放,在鼓粒-成熟期对照与增温的排放通量分别为202.09±28.75、378.34±156.17mg·m-2·h-1,增温处理使CO2排放通量增加了87.21%,但未达到显著水平;增温使土壤CO2累积排放量显著增加了39.96%。对照和增温的大豆-土壤系统呼吸的气温敏感性系数Q10值分别为0.68和2.54,土壤呼吸的土壤温度Q10值分别为4.22和1.68。研究表明,增温能促进土壤CO2排放,增加大豆-土壤系统呼吸的Q10值,降低土壤呼吸的Q10值。研究结果可为气候变化条件下估算区域农田温室气体排放提供一定的科学依据。  相似文献   

18.
盐碱地土壤:氧化亚氮和二氧化碳排放的潜在来源?   总被引:2,自引:1,他引:1  
Increasing salt-affected agricultural land due to low precipitation,high surface evaporation,irrigation with saline water,and poor cultural practices has triggered the interest to understand the influence of salt on nitrous oxide(N_2O) and carbon dioxide(CO_2)emissions from soil.Three soils with varying electrical conductivity of saturated paste extract(EC_e)(0.44-7.20 dS m~(-1)) and sodium adsorption ratio of saturated paste extract(SARe)(1.0-27.7),two saline-sodic soils(S2 and S3) and a non-saline,non-sodic soil(S1),were incubated at moisture levels of 40%,60%,and 80%water-filled pore space(WFPS) for 30 d,with or without nitrogen(N)fertilizer addition(urea at 525 μg g~(-1) soil).Evolving CO_2 and N2 O were estimated by analyzing the collected gas samples during the incubation period.Across all moisture and N levels,the cumulative N_2O emissions increased significantly by 39.8%and 42.4%in S2 and S3,respectively,compared to S1.The cumulative CO_2 emission from the three soils did not differ significantly as a result of the complex interactions of salinity and sodicity.Moisture had no significant effect on N_2O emissions,but cumulative CO_2 emissions increased significantly with an increase in moisture.Addition of N significantly increased cumulative N_2O and CO_2 emissions.These showed that saline-sodic soils can be a significant contributor of N_2O to the environment compared to non-saline,non-sodic soils.The application of N fertilizer,irrigation,and precipitation may potentially increase greenhouse gas(N2O and CO_2) releases from saline-sodic soils.  相似文献   

19.
2013年6月-2014年6月,在河南省新乡夏玉米-冬小麦试验田设置四种处理即农民常规施肥(F处理,250kg·hm-2)、减氮20%(LF处理,200kg·hm-2)、减氮20%+黑炭(LFC),以不施肥处理为对照(CK),采用静态箱-气相色谱法,对夏玉米-冬小麦生长季土壤CO2和N2O排放通量动态进行测定。结果表明:(1)夏玉米-冬小麦田的土壤CO2排放通量为21.8~1022.7mg·m-2·h-1,土壤CO2排放通量主要受土壤温度和水分的影响,在夏玉米季受土壤水分的影响更为显著,而在冬小麦季则为5cm土层处的温度对其影响更为突出。减施氮肥20%处理和减氮加生物黑炭共同作用使土壤CO2累积排放量显著降低,小麦生长季的减排作用尤为显著。(2)施肥和灌溉是影响土壤N2O排放的最主要因素,施肥期间N2O排放量分别占夏玉米季和冬小麦季累积排放量的73.9%~74.5%和40.5%~43.6%;施肥量主要影响排放峰的强度,灌溉主要影响排放峰出现时间的早晚且会影响不同措施的减排效果。在每季作物250kg·hm-2施氮水平下减施氮肥20%使夏玉米季和冬小麦季的N2O累积排放量分别降低15.7%~16.8%和18.1%~18.5%,是高产集约化农田减排N2O的有效措施。在适宜施氮水平(200kg·hm-2)下施用生物黑炭,短期内对土壤N2O排放无显著影响。(3)夏玉米-冬小麦田农民常规施肥水平的N2O排放系数为0.60%,减氮施肥的N2O排放系数为0.56%。在华北平原高产集约化农田适当减氮施肥不仅能降低农田土壤温室气体排放,且对作物产量无影响,是适宜的温室气体减排措施。  相似文献   

20.
闫靖华  张凤华  李瑞玺  杨海昌 《土壤》2013,45(4):661-665
对干旱区盐渍化弃耕地不同恢复模式下土壤有机碳及呼吸速率的变化特征进行分析,结果表明:盐渍化弃耕地不同恢复模式下土壤有机碳含量为人工草地>补水>补植>原始弃耕地,盐渍化弃耕地通过植被恢复后逐步向碳积累的过程转变,呈现碳汇现象,其中,人工草地的土壤有机碳含量和有机碳密度分别比弃耕地高出63.45%和65.47%.土壤有机碳与土壤速效养分存在着密切的正相关关系.植被恢复后明显增加了土壤呼吸速率,不同恢复模式下土壤呼吸温度敏感系数Q10的值为人工草地(1.48)>补水(1.21)>补植(1.15)>原始弃耕地(1.13);土壤有机碳与土壤呼吸速率之间呈显著正相关关系,与温度敏感系数呈正相关关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号