首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 950 毫秒
1.
高寒矮嵩草草甸地上生物量和叶面积指数的季节动态模拟   总被引:1,自引:1,他引:0  
基于2007年中国科学院海北高寒草甸生态系统定位站植被和气象观测资料,探讨了高寒矮嵩草草甸群落叶面积指数、地上生物量的季节动态变化及其数学模型,分析了叶面积指数与地上生物量的相互关系,以及气象条件对叶面积指数和地上生物量的影响。结果表明,高寒矮嵩草草甸群落植被生长期地上生物量的季节动态变化可以用Logistic回归模型拟合;植被叶面积指数的季节动态变化可以用三次函数曲线拟合,叶面积指数受温度和降水量的影响明显,与植物生长期日平均气温≥3℃的积温和降水累积量分别有三次函数的拟合关系,而考虑与积温和降水累积量的综合关系可用二元二次函数拟合;同时,叶面积指数与地上生物量之间有二次函数的拟合关系。  相似文献   

2.
研究了高寒草甸不同类型草地土壤养分与多样性—生产力之间的关系,即物种多样性对生产力的效应如何受到资源供给率等因素的影响。结果表明:以莎草类为优势种的藏嵩草沼泽化草甸群落其总生物量(包括地上和地下生物量)最高(13,196.96±719.69gm-2)、小嵩草草甸和金露梅灌丛群落为中等水平(2,869.58±147.52gm-2、2,672.94±122.49gm-2)、矮嵩草草甸群落为最低(2,153.08±141.95gm-2)。在藏嵩草沼泽化草甸群落中,总生物量和物种丰富度呈显著负相关(P<0.05);地上生物量与土壤有机质、土壤含水量和群落盖度显著正相关(P<0.05);地下生物量和土壤含水量显著正相关(P<0.05)。在矮嵩草草甸、小嵩草草甸、金露梅灌丛群落中,地上生物量与土壤有机质和土壤总氮显著正相关(P<0.05)。以上结果说明生物量的分布与土壤营养和水分变化相一致。在矮嵩草草甸、小嵩草草甸和金露梅灌丛中,多样性有随土壤养分的增加而增加的趋势;在藏嵩草沼泽化草甸中,则呈现负相关的关系。  相似文献   

3.
亚高山草甸土纤维素分解过程及与环境因子的对应关系   总被引:3,自引:0,他引:3  
李英年  姜文波 《土壤通报》2000,31(3):122-124
对海北高寒草甸生态系统的矮嵩草研究表明 ,在亚高山草甸土中纤维素的分解 ,作用均在月均温度最高时达最大 ,2月份最小 ,年内表现有明显的单峰式曲线变化过程 ;非退化矮嵩草草甸的纤维素分解显著高于退化的矮嵩草草甸 ;纤维素分解除自身的季节变化规律外 ,与气象等环境因子有关 ,特别是与水热协调配合具有极显著线性正相关关系 (P <0 .0 0 1 ) .  相似文献   

4.
本文以作物生长模拟理论为基础,考虑到草原群落多种群的特点,对高寒矮嵩草草甸建立了能反映气象因子与生物因子对种群生物量时间动态综合影响的总模式,包括对任意种群作用、呼吸作用、同化物分配等生理过程的定量模拟及叶面积指数动态、群落结构动态模拟等6类子模式,能够定量地给出该草甸群落地上生物量和地下生物量的季节变化,是草原植被光合产量模拟研究的较好尝试。  相似文献   

5.
以空间代替时间的方法,于2012年7月中旬-8月中旬在青藏高原祁连山南麓分别选取原生、轻度、中度和重度4种不同退化梯度的高寒嵩草(Kobresia)草甸,对其土壤理化、水分特征和植被群落进行研究,以探究高寒嵩草草甸生态功能退化过程中植被群落的变化特征.结果表明,中度退化样地的地上生物量、表层(0-10cm)土壤含水量和降水地表入渗速率显著最小(P<0.01),表层地下生物量、表层土壤有机质、表层田间持水量和草毡层厚度显著最大(P<0.01).基于退化高寒嵩草草甸群落的植被功能群和群落多样性的非度量多维排序结果表明,其退化过程可明确划分为原生植被、轻度退化、中度退化和重度退化4个阶段,冠层高度、地上生物量、草毡层厚度和降水地表入渗速率对群落变化的相对贡献较大.植被群落对退化过程的响应为非平衡型(Non-equilibrium),群落变化的“分水岭”存在于中度退化和重度退化之间.研究结果对退化嵩草草甸的恢复措施选择具有重要的指导意义.  相似文献   

6.
地球边界层热量来源是地表吸收太阳短波辐射后再以长波辐射形式加热的结果,而边界层生物活动与近地表热量息息相关,讨论长波辐射的变化特征对生态系统的物质流动及能量交换具有重要意义。以2003年对高寒矮嵩草草甸、金露梅灌丛两种植被类型观测的资料,比较分析了两种植被类型地面长波辐射(ULR)、大气逆辐射(DLR)以及地面有效长波辐射(ELR)的变化特征。结果表明,高寒矮嵩草草甸、金露梅灌丛ULR、DLR以及ELR均具有明显的日、月变化。其中矮嵩草草甸、金露梅灌丛的ULR月平均日变化在北京时间14∶00最高,凌晨最低;DLR在16∶00-18∶00最高,凌晨最低;ELR在8∶00最低,14∶00最高。月变化中,两种植被类型区ULR、DLR的最低值出现在1-2月,较高值出现在7-9月,而ELR变化趋势比较复杂。总体而言,金露梅灌丛的DLR、ULR变化值明显比矮嵩草草甸的高。  相似文献   

7.
对祁连山海北地区矮嵩草(Kobresia humilis)草甸和金露梅(Potentilla fruticosa)灌丛草甸两种植被类型土壤热通量观测和比较分析发现:晴天两种植被类型区土壤热通量日变化均表现为单峰型,夜间低午后高;阴雨天土壤热通量变化复杂,随降水或云层厚薄波动剧烈。金露梅灌丛草甸土壤热通量的日变化较矮嵩草草甸更为平稳。两种草甸土壤热通量的月际变化同样表现为单峰型,12月最低(矮嵩草草甸和金露梅灌丛草甸分别为-40.27MJ/m2和-16.85MJ/m2)、6月最高(矮嵩草草甸和金露梅灌丛草甸分别为20.47MJ/m2和18.98MJ/m2)。矮嵩草草甸与金露梅灌丛草甸土壤热通量的年总量差异明显,分别为-24.72MJ/m2和48.10MJ/m2。表现出前者由土壤深层向地表散热,而后者由地表向土壤深层输送热量。两种植被类型区不同时间尺度上的土壤热通量与冠层净辐射均有显著的线性相关关系。由于冠层厚度的影响,金露梅灌丛草甸土壤热通量所占净辐射的比例较小,同步性较差,反馈延时约2.5h,而矮嵩草草甸的土壤热通量与净辐射的相关性更加密切。  相似文献   

8.
高寒草甸植物地下生物量与气象条件的关系及周转值分析   总被引:18,自引:0,他引:18  
李英年 《中国农业气象》1998,19(1):36-38,42
分析高寒草甸植物地下生物量季节动态及年一直净生产量与气候条件之间的关系表明1.高寒草甸植物地下生物量在牧草生长季的5-10月呈“N”型的规律,10月最高,6月次高;7月最低.5月次低;地下生物量的这种季节性变化与土壤湿度的变化具有很好的滞后正相关。  相似文献   

9.
放牧高寒嵩草草甸的稳定性及自我维持机制   总被引:4,自引:0,他引:4  
以空间代时间,在"三江源"和中国科学院海北高寒草甸生态系统研究站地区,将处于不同退化阶段的高寒嵩草草甸作为研究对象,进行了其植物群落、地表状况、草毡表层厚度、根土比和水分渗透速率的演替过程与规律研究,以明晰放牧高寒嵩草草甸退化过程中其系统稳定性及自我维持机制。结果表明,高寒嵩草草甸虽然结构简单,但在长期适应寒冷气候进化过程中形成了低矮化、细绒化和草毡表层加厚、极度发育等一系列特殊的稳定性维持机制,可以承受一定范围内的人为干扰和气候波动,具有较高的系统稳定性与自我调控能力,但系统遭到破坏后的恢复能力极差。今日高寒草甸的大面积退化,是人类所赋加于草地的承载力远超过其承载力阈值而导致系统稳定性崩溃的结果。  相似文献   

10.
依托青藏高原东北隅高寒矮嵩草草甸的5a放牧强度(禁牧、轻度放牧、中度放牧、重度放牧)试验平台,2016年在植物生长季的6-9月,基于静态暗箱-气相色谱法,测定N2O的释放特征及相应的环境、生物因子,探讨放牧强度对高寒草甸N2O释放特征的影响及其内在环境生物驱动机制。结果表明:环境、生物因子中仅表层土壤容积含水量、土壤容重及土壤有机碳含量对放牧强度响应显著(P<0.05)。高寒草甸N2O释放的季节特征表现出生长季的早期和晚期相对较高的“U”型趋势。禁牧样地N2O释放速率最小,极显著(P<0.01)低于其它3个放牧样地。高寒草甸N2O释放强度与放牧强度间表现出正相关趋势(R= 0.49, P<0.01)。相关分析表明,表层土壤温度是高寒草甸N2O释放速率的主要影响因子,但放牧强度改变了土壤温度的影响程度。中短期放牧管理改变了高寒草甸植被生长季N2O释放速率,但未改变其释放的季节特征。禁牧管理提高了土壤温度,进而显著降低植被生长季N2O释放强度。  相似文献   

11.
Alpine wetlands and meadows across the Three Rivers Source Region (TRSR) store high soil organic carbon (SOC). However, information on factors affecting SOC storage is scanty. Herein, we investigated SOC storage and explored factors affecting SOC storage, including climate, soil properties and above- and belowground biomass, using 50 soil profiles across the TRSR on the Tibetan Plateau. The SOC storage was 491.9 ± 158.5 Tg C and 545.2 ± 160.8 Tg C in the TRSR alpine wetlands and meadow, respectively. The SOC stock was positively correlated with the mean annual precipitation. However, no significant correlation between SOC stock and mean annual temperature was observed, as opposed to the global trend. In addition, SOC stock was positively correlated with both the aboveground biomass (AGB) and belowground biomass (BGB). Soil pH indirectly affected SOC stock, while SOC stock positively correlated with Al and Fe oxyhydroxides. Compared with vegetation biomass and climatic factors, soil properties, including soil pH and Al and Fe oxyhydroxides (Alo and Feo), affected not only SOC stock variation but also affected the impact of vegetation and climatic factors on SOC stock. Climate factors, AGB, BGB, soil pH, Alo and Feo jointly accounted for 59% of SOC stock variation in alpine wetlands and 64% of SOC stock variation in alpine meadow. This study suggests that soil properties are the dominant factors affecting SOC variation in alpine wetlands and meadow on the Tibetan Plateau.  相似文献   

12.
为探讨物种多样性与地上生物量的相关性以及物种多样性的垂直变化特征.以阿尔泰山布尔津林区5种草地类型为研究对象,通过对布尔津林区各草地类型的调查,分析了阿尔泰山布尔津林区各草地类型的物种多样性变化特征.结果 表明:(1)5个草地群落类型地上生物量差异明显,荒漠草原和山地草甸草原较低,山地草原最高,而山地草甸和高寒草甸处于...  相似文献   

13.
This study determined temporal variability in N pools, both aboveground and belowground, across two contrasting plant communities in high-Arctic Spitsbergen, Svalbard (78°N). We measured N pools in plant material, soil microbial biomass and soil organic matter in moist (Alopecurus borealis dominated) and dry (Dryas octopetala dominated) meadow communities at four times during the growing season. We found that plant, microbial and dissolved inorganic and organic N pools were subject to significant, but surprisingly low, temporal variation that was controlled primarily by changes in temperature and moisture availability over the short growing season. This temporal variability is much less than that experienced in other seasonally cold ecosystems such as alpine tundra where strong seasonal partitioning of N occurs between plant and soil microbial pools. While only a small proportion of the total ecosystem N, the microbial biomass represented the single largest of the dynamic N pools in both moist and dry meadow communities (3.4% and 4.6% of the total ecosystem N pool, respectively). This points to the importance of soil microbial community dynamics for N cycling in high-Arctic ecosystems. Microbial N was strongly and positively related to soil temperature in the dry meadow, but this relationship did not hold true in the wet meadow where other factors such as wetter soil conditions might constrain biological activity. Vascular live belowground plant parts represented the single largest plant N pool in both dry and moist meadow, constituting an average of 1.6% of the total N pool in both systems; this value did not vary across the growing season or between plant communities. Overall, our data illustrate a surprisingly low growing season variability in labile N pools in high-Arctic ecosystems, which we propose is controlled primarily by temperature and moisture.  相似文献   

14.
The aim of this study was to assess initial effects of warming on the nutrient pools of carbon and nitrogen of two most widespread ecosystem types, swamp meadow and alpine meadow, in the Qinghai-Tibet Plateau, China. The temperature of the air and upper-soil layer was passively increased using open-top chambers (OTCs) with two different temperature elevations. We analyzed air and soil temperature, soil moisture, biomass, microbial biomass, and nutrient dynamics after 2 years of warming. The use of OTCs clearly raised temperature and decreased soil moisture. The aboveground plant and root biomass increased in all OTCs in two meadows. A small temperature increase in OTCs resulted in swamp meadow acting as a net carbon sink and alpine meadow as a net source, and further warming intensified this processes, at least in a short term. On balance, the alpine ecosystems in the Fenghuoshan region acted as a carbon source.  相似文献   

15.
为探究不同海拔和坡向下高寒草甸土壤"固—液—气"三相组成变化特征,以东祁连山高寒草甸为研究对象,分析了不同海拔(2 800,3 000,3 200,3 400,3 600,3 800,4 000 m)、坡向(阳坡、阴坡)高寒草甸的植被特征和土壤物理特征,结合植被指标拟合探讨高寒草甸"固—液—气"三相的最佳组成比例。结果表明:植被盖度、草层高度和地上生物量均随海拔升高呈先升高后降低,在海拔3 200 m处达最大值,同一海拔的阴坡植被盖度、草层高度、地上生物量均高于阳坡;土壤容重随海拔和坡向的变化规律与植被盖度相反,而土壤含水量、孔隙度和持水性变化规律与植被盖度类似;经方程拟合发现,土壤"固—液—气"三相比例为31∶33∶36时,高寒草甸生产力最优。综上所述,在海拔3 200 m处是东祁连山高寒草甸分布的中心典型区域,海拔和坡向是影响高寒草甸土壤物理质量和"固—液—气"三相组成的重要环境因子,且该区域高寒草甸土壤"固—液—气"最佳比例为31∶33∶36。  相似文献   

16.
Knowledge about the elevational patterns of soil microbial biomass and communities can facilitate accurate prediction of the responses of soil biogeochemical processes to climate change. However, previous studies that have considered intra- and inter-annual variations have reported inconsistent results on the one hand, and they have paid little attention to the effect of soil layer on the other hand. We, therefore, conducted a 4-year in situ soil core incubation experiment along a 2431-m elevational gradient across the dry valley shrubland, valley-montane ecotone forest, subalpine coniferous forest, alpine coniferous forest, and alpine meadow in an ecologically fragile alpine-gorge region on the eastern edge of the Qinghai-Tibetan Plateau. Soil microbial biomass and community composition in the organic and mineral layers were measured using the phospholipid fatty acids (PLFA) method at five critical periods each year. Our results indicated that soil microbial biomass in the organic layer was the highest in the subalpine coniferous forest, followed by the alpine meadow, alpine coniferous forest, and valley-montane ecotone forest. In contrast, soil microbial biomass in the mineral layer was significantly higher in the alpine meadow than in the other sites. Soil microbial biomass exhibited differential seasonal fluctuations at different elevations, resulting in their elevational patterns being strongly intra-annual and inter-annual dependent. Our results revealed that elevation and seasonality significantly affected soil microbial communities. Seasonality had a more substantial effect than elevation on soil microbial communities during the first 3 years of incubation, whereas the relative importance of seasonal and elevational effects on microbial communities was reversed in the organic layer with incubation time. These results are mainly attributed to the magnitude and direction of effect of environmental variables on soil microbial biomass and communities vary with elevation, soil layer, and sampling time. Briefly, the elevational patterns and dominant factors of soil microbial biomass and communities have intense soil layer and temporal specificity, implying that differential responses of soil biochemical processes to climate change might be observed at different elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号