首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
白术矮化病毒病病原的分子鉴定和部分序列分析   总被引:2,自引:0,他引:2  
 本试验在生物学接种的基础上,利用非序列依赖性PCR扩增(sequence-independent amplification,SIA)对白术矮化病毒病病原进行了分子鉴定,序列测定及分析。结果发现,具有矮化症状的白术为黄瓜花叶病毒(Cucumber mosaic virus,CMV)所侵染。为明确CMV白术分离物(CMV-Am)的分类地位,本研究进一步克隆了CMV-Am的外壳蛋白基因(CP)和移动蛋白基因(MP)全序列。序列比对分析表明,CMV-Am与CMV亚组ⅠB中株系XJ2序列同源性最高,核苷酸、氨基酸序列同源性分别为98.9%、99.1%。氨基酸序列同源性聚类分析表明,CMV-Am与中国大多数CMV分离物一样,属于CMV亚组ⅠB。  相似文献   

2.
Severe mosaic accompanied by leaf and fruit deformation symptoms was observed on banana plants growing in three banana farms of Uttar Pradesh, India. The disease incidence was approximately 18–25% at these locations during the three successive years from 2005 to 2007. The occurrence of Cucumber mosaic virus (CMV) was initially detected by bioassay, electron microscopic observations, Western blot immunoassay and RT-PCR. For molecular identification of virus, the RNA 1a, RNA 2b and RNA 3 genomic fragments were amplified by RT-PCR and sequenced. The sequence analysis of these genomic fragments revealed its highest identities and close relationships with Indian strains of CMV of subgroup IB; therefore, virus associated with the mosaic disease of banana was identified as an isolate of CMV of subgroup IB. In the limited reports existing from India, which provided preliminary serological or only coat protein-based identification of CMV infecting banana but the comprehensive studies were lacking. In the present communication, we present a detailed biological, serological and molecular characterization of CMV-Banana for the first time from India.  相似文献   

3.
Severe mosaic, yellowing and stunting symptoms were observed on petunia (Petunia hybrida L.) growing in pots at NBRI and in various gardens of Lucknow, India. The association of Cucumber mosaic virus (CMV) with the mosaic disease was detected based on positive bioassay on susceptible hosts, isometric cored virus particles of ~28?nm during electron microscopic observations in leaf dip preparations and positive amplification of expected size (~650?bp) during RT-PCR using coat protein gene specific primers. Further, the complete RNA 3 genomic fragment of virus isolate was amplified by RT-PCR using RNA 3 specific primers. The obtained amplicons of ~2.2 Kb were cloned and sequenced. The analysis of sequence data of RNA 3 revealed highest sequence identities (96%) with several CMV strains which belong to subgroup IB. The virus isolate also showed closest phylogenetic relationships with banana strain of CMV of subgroup IB (Acc. EF178298) reported from India. To the best of our knowledge, we report the first molecular characterization of CMV strain of subgroup IB causing severe mosaic disease on petunia in India.  相似文献   

4.
正白术(Atractylodes macrocephala Koidz.)为菊科(Compositae)苍术属(Atractylodes)多年生草本植物,其根茎入药具补脾健胃、燥湿利水、止汗安胎等功效,在我国广泛栽培,并以于术(浙江临安于潜)品质最佳[1]。近年来白术生产由于品种单一,长期连作等因素导致病毒病害日趋严重。据报道,黄瓜花叶病毒(Cucumber mosaic virus,CMV)~([2])、蚕豆萎蔫病毒2号(Broad bean wilt virus 2,  相似文献   

5.
6.
7.
瞬时表达靶向TMV外壳蛋白基因的siRNA能干扰病毒侵染   总被引:10,自引:0,他引:10  
 RNA干扰(RNA interference,RNAi)是与内源性mRNA编码区某段序列同源的双链RNA导入细胞后,该mRNA发生特异性降解,从而导致该基因表达沉默的现象。小干扰RNA(small interfering RNA,siRNA)作为RNAi途径的重要中介,已被广泛应用于动、植物抗病毒治疗研究。本文以烟草花叶病毒(Tobacco mosaic virus,TMV)外壳蛋白基因为靶位,设计合成表达小干扰RNA的寡核苷酸,亚克隆到植物双元表达载体pBI121中,直接转化根癌农杆菌。通过根癌农杆菌介导的瞬时表达法,研究了同源于TMV外壳蛋白的siRNA对TMV侵染的干扰作用。结果表明,瞬时表达的siRNA能够特异性干扰TMV侵染。含有重组表达载体pBI121/siRNA的根癌农杆菌渗入普通烟植株,在TMV接种后14d其上部叶片没有表现典型的花叶症状。对这些叶片进行Northern杂交试验也没有检测到TMV病毒的RNA积累或仅有很少量的积累。在枯斑寄主心叶烟上,siRNA的瞬时表达可使TMV侵染后的枯斑数明显减少,甚至不产生枯斑。此外,同源于TMV外壳蛋白的siRNA瞬时表达对非同源的黄瓜花叶病毒(Cucumber mosaic virus,CMV)没有抑制作用,表明siRNA的干扰作用具有高度的同源依赖性。  相似文献   

8.
黄瓜花叶病毒NASBA检测技术的建立   总被引:3,自引:0,他引:3  
 以香蕉花叶病病样为材料,初步建立了黄瓜花叶病毒核酸序列依赖性扩增(Nucleic acid sequence based amplifica-tion,NASBA)的检测技术。通过以香蕉叶片总RNA为模板,在黄瓜花叶病毒(Cucumber mosaic virus,CMV)亚组ⅠRNA 2高保守区设计特异引物,进行NASBA反应,经5%琼脂糖凝胶电泳检测,阳性样品中出现了预期大小为310 bp的条带,而阴性和空白对照中均未出现。并对11份香蕉样品分别进行NASBA反应,并经过斑点杂交验证与RT-PCR检测比较,两者的检测结果一致,灵敏度相当,检出限量可达100 pg。  相似文献   

9.
 在生物学检测的基础上,利用酶联免疫检测、非序列依赖性PCR(sequence-independent amp-lification, SIA)对感病番茄进行分子鉴定,表现卷叶和花叶症状的番茄均被黄瓜花叶病毒(Cucumber mosaic virus,CMV)侵染,分离物分别命名为SXFQ(GenBank登录号为JX993914)和FQ(GenBank登录号为JX993912)。为明确其分类地位,对二者外壳蛋白(coat protein, CP)进行克隆和测序分析。应用DNAMAN软件对本课题组前期检测的7个CMV山西分离物、SXFQ、FQ以及其他3个CMV典型分离物CP序列进行比较分析,发现核苷酸和氨基酸序列最大相似性分别为77.1%~100%和81.6%~100%。氨基酸序列系统进化分析表明,9个CMV山西分离物属于CMV亚组I B的2个分支,其中在指示植物上表现较强症状的SXFQ与其他5个分离物为一分支,在指示植物上表现较弱症状的FQ与其他2个分离物为另一分支。对9个山西分离物CP进行亚组分类分析,结果表明其理化性质、稳定性、疏水性与预测结果相近,2个分支的分离物分别出现相近的氨基酸变异和蛋白结构,存在一定规律性。  相似文献   

10.
Viral diseased Passiflora edulis samples showing mosaic, shrinking, chlorosis, and malformation were collected from Yuxi, Wenshan, Dehong, and Xishuangbanna in Yunnan Province. Forty diseased samples were detected by RT-PCR/PCR using degenerate primers of members in genera of Umbravirus, Tobamovirus, Luteovirus, Orthotospovirus, Begomovirus, Badnavirus, Potyvirus and specific primers of cucumber mosaic virus (CMV). Results showed that CMV, telosma mosaic virus (TeMV) and papaya leaf curl Guangdong virus (PaLCuGdV) were detected in the diseased P. edulis samples. CMV showed the highest detection rate of 27.5 %, while TeMV and PaLCuGdV had the rates of 20.0% and 7.5% respectively among the P. edulis samples. Mixed infections of PaLCuGdV+CMV, PaLCuGdV+TeMV and CMV+TeMV were also found in these samples. The 657 nucleotide (nt) CMV full-length coat protein (CP) gene was cloned and sequenced from two diseased samples in Yuxi (YYXi-JDG, Acc. No. MW495062) and Xishuangbanna (YXSBN-JDG, Acc. No. MW495063), respectively. These two CMV isolates shared 97.3% identity of nt sequence with each other, while had 76.9%-97.7% and 77.0%-98.2% nt identity with other CMV isolates, respectively. Phylogenetic tree showed that the two CMV isolates from P. edulis belonged to CMV subgroup Ⅰ, and no obvious geographic differentiation and host specificity relationship was found among the selected 33 CMV isolates worldwide.  相似文献   

11.
Four Cucumber mosaic virus (CMV) (CMV-HM 1–4) and nine Tomato mosaic virus (ToMV) (ToMV AH 1–9) isolates detected in tomato samples collected from different governorates in Egypt during 2014, were here characterized. According to the coat protein gene sequence and to the complete nucleotide sequence of total genomic RNA1, RNA2 and RNA3 of CMV-HM3 the new Egyptian isolates are related to members of the CMV subgroup IB. The nine ToMV Egyptian isolates were characterized by sequence analysis of the coat protein and the movement protein genes. All isolates were grouped within the same branch and showed high relatedness to all considered isolates (98–99%). Complete nucleotide sequence of total genomic RNA of ToMV AH4 isolate was obtained and its comparison showed a closer degree of relatedness to isolate 99–1 from the USA (99%). To our knowledge, this is the first report of CMV isolates from subgroup IB in Egypt and the first full length sequencing of an ToMV Egyptian isolate.  相似文献   

12.
We analyzed the evolutionary histories of two lily strains of Cucumber mosaic virus (CMV) isolated in Japan and Korea (HL- and Ly2-CMVs). They share common biological characteristics in that their host ranges are very restricted perhaps from a unique adaptation to lily plants. Although HL and Ly2 were isolated independently from different lily species in separate countries, their RNA3 sequences had a very high sequence similarity (97%). The evolutionary relationships between the two isolates were characterized by comparing their phylogenetic trees for the 3a and CP genes. The two lily CMVs always formed a distinct cluster within subgroup IB in 3a, but within IA in CP. Together, the phylogenetic tree topology and the sequence identity between the two lily CMVs suggest that they evolved from a common progenitor. Received 5 November 2001/ Accepted in revised form 11 January 2002  相似文献   

13.
A. virus causing mosaic and leaf deformation of Physalis minima has been identified as an isolate of cucumber mosaic virus (CMV) on the basis of its transmission by aphids in a non-persistent manner, polyhedral particles of 29 nm diameter, molecular weight of coat protein subunits us 24-5 kDa. serological relationship with a CMV isolate and a tripartite single-stranded RNA genome with a subgenomic RNA4- Furthermore. cDNA representing coat protein gene was synthesized and cloned. Complete nucleotide sequences (890 nt) were obtained which showed a coat protein gene open reading frame of 657 residues. THE nucleotide sequences provided the 218 amino ACID sequences of the coat protein. Nucleotide as well as amino acid sequences revealed more than 90% identity with the CMV subgroup I strains.  相似文献   

14.
In Brazil plants of Pfaffia glomerata with mosaic symptoms were found to be infected with a previously undescribed potyvirus, Pfaffia mosaic virus (PfMV). Virus particles were long and flexuous, c.  10 × 700–800 nm, and cylindrical inclusions typical of potyviruses were present in cells of infected tissue. Partial host-range studies revealed that in addition to P. glomerata , PfMV infected only Chenopodium amaranticolor and Chenopodium quinoa . It was efficiently transmitted by the aphids Aphis gossypii and Myzus persicae . Polyclonal antiserum produced against the PfMV coat protein (CP) reacted with Potato virus Y (PVY), but not with four other potyviruses in PTA-ELISA. The similarity of the nucleotide sequence of the PfMV coat-protein gene ( CP ) varied from 7 to 76% when compared with other members of the family Potyviridae . Similarity of the 3' NTR sequence varied from 4 to 23%. In both cases the highest similarity was with PVY. These data indicate that PfMV is a new species in the genus Potyvirus .  相似文献   

15.
 核苷酸序列分析结果表明,小麦黄色花叶病毒(W YMV)不同分离物的外壳蛋白基因存在一定的差异。邓州分离物CP基因在其31~33nt处均缺失了3个核苷酸,其余分离物与潢川分离物及日本分离物长度一致,均为882nt。不同分离物CP基因核苷酸序列同源性为97.3%~98.9%,由此推导的氨基酸序列同源性为97.6%~99.3%,外壳蛋白N末端的110个氨基酸和C末端的55个氨基酸在各个分离物间是高度保守的。潢川分离物有5个氨基酸与其它5个分离物明显不同。WYMV不同分离物外壳蛋白序列分析结果进一步确认了WYMV与WSSMV为Bymovirus属的2种不同病毒。  相似文献   

16.
Local symptom expression and systemic movement of Cucumber mosaic virus (CMV) in Tetragonia expansa, Momordica charantia and Physalis floridana were mapped to the amino acid at position 129 of CMV coat protein (CP), using pseudorecombinants, chimeric RNAs, a site-directed mutant of RNA 3 and four strains of CMV : pepo-, SO-, MY17- and Y-CMV. Local and systemic symptoms caused by three strains, pepo-, SO- and MY17-CMV, and those by Y-CMV differed in the three host species. The three strains expressed local chlorotic spots at 24°C and systemic chlorotic spots and ringspots at 36°C, whereas Y-CMV developed local necrotic spots at 24°C but no systemic symptoms at 36°C in T. expansa. In M. charantia the three strains caused systemic chlorotic spots, whereas Y-CMV caused local necrotic spots. The three caused systemic mosaic and Y-CMV systemic necrosis in P. floridana. With pseudorecombinants combined with pepo- and Y-CMV RNAs, CMV RNA 3 was responsible for symptom expression and systemic infection. Inoculation with Y-CMV RNA 1, RNA 2 and chimeric RNA 3s exchanged CP gene fragments between pepo- and Y-CMV showed that NruI-XhoI fragment of CP was essential for symptom expression. Comparative analysis of the NruI-XhoI fragments revealed that only the amino acid at position 129 was common among the three strains but different from that of Y-CMV. Inoculation with a point mutant constructed by substituting one nucleotide resulting in an amino acid change from Ser to Pro at position 129 in Y-CMV CP verified the previous experiments. These results indicate that the amino acid at position 129 of CMV CP is the determinant for local symptom expression and systemic movement in the three host species. CMV CP containing Ser at position 129 may induce resistant responses in these plants. Received 29 June 2001/ Accepted in revised form 28 August 2001  相似文献   

17.
正已知有3种病毒可在自然条件下侵染竹类植物,即竹花叶病毒(bamboo mosaic virus,BaMV)~[1]、樱桃坏死锈斑驳病毒(cherry necrotic rusty mottle virus,CNRMV)和苹果茎沟病毒(apple stem grooving virus,ASGV)~[2,3]。其中,BaMV是最早在巴西的金竹(Bambusa vulgaris Cv.)和孝顺竹  相似文献   

18.
19.
Momordica charantia L. plants systemically infected with Cucumber mosaic virus (CMV) were found in Oita Prefecture. The virus isolated from the host plant was characterized by biological, serological, and molecular biological methods. The purified virus was used to mechanically inoculate the host and produced green mottle, green mosaic, and/or chlorotic spots in the noninoculated upper leaves of the host. The virus was identified as an isolate of CMV containing genomic RNA3 derived from subgroup IA by several lines of evidence based on electron microscopy, serological detection, host range, symptoms, and the entire nucleotide sequence of RNA3.  相似文献   

20.
ABSTRACT A comparative study was made on the host reactions, serological properties, and nucleotide sequences of the coat protein (CP) gene of 10 clover yellow vein virus (C1YVV) isolates and one bean yellow mosaic virus (BYMV) isolate collected from different host plant species and locations in Japan. Two strains of C1YVV isolates, grouped on the basis of host reactions on Chenopodium amaranticolor, C. quinoa, Nicotianaclevelandii, N. benthamiana, Vicia faba, and Trifolium repens, corresponded to two serotypes determined by double-antibody sandwich- and triple-antibody sandwich-enzyme-linked immunosorbent assay using three polyclonal and nine monoclonal antibodies. These results were also confirmed by nucleotide sequence analysis of the CP gene. The CP gene of C1YVV isolates of strain 1, including the Australian isolate C1YVV-B, had 93 to 98% nucleotide identities and 97 to 99.6% amino acid identities. The CP of C1YVV isolates of strain 2, including the New Zealand isolate C1YVV-NZ, had 92 to 98% nucleotide identities and 95 to 98% amino acid identities. The nucleotide identities and the amino acid identities between the two C1YVV strains were 82 to 84%, and 90 to 94%, respectively. When compared with the CP sequences of 12 C1YVV isolates, the CP sequence of the BYMV isolate had 71 to 73% nucleotide identity and 73 to 77% amino acid identity. Amino acid sequence differences among C1YVV isolates from strains 1 and 2 were located mostly at the N-terminal regions of the CP. Our results indicated that the C1YVV isolates studied could be separated into two strains on the basis of host reactions, serology, and the nucleotide sequence of the CP gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号