首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
【目的】建立一种能够特异性检测和鉴定16SrⅠ组植原体的环介导恒温扩增技术,实现16SrⅠ组植原体的快速检测。【方法】以植原体tuf基因作为靶标,通过序列比对,设计多组具有特异性的LAMP引物组,筛选出一套适用于16SrⅠ组植原体的特异性检测体系。以16SrⅡ组、16SrⅤ组、16SrⅩⅨ组植原体样品按照此检测体系进行反应,来验证其特异性;同时将稀释后的感病组织样品同步进行PCR和LAMP检测,以确定其检测灵敏度。对来自不同省市的6份田间样品以及9份组培样品进行检测,以验证其检测的稳定性。【结果】16SrⅠ-LAMP在恒温63℃条件下40 min内完成扩增,能检测5种分别引起泡桐丛枝、苦楝丛枝、桑树萎缩、莴苣黄化和长春花绿变病的16SrⅠ组植原体,不能检测其他组植原体包括16SrⅡ组的花生丛枝、甘薯丛枝、臭矢菜丛枝、16SrⅤ组的枣疯病、红花槐丛枝、樱桃致死黄化和16SrⅩⅨ组的板栗黄化皱缩植原体。通过在反应液中加入钙黄绿素肉眼判断绿色为阳性结果,褐色为阴性结果,与用荧光定量设备进行判读扩增曲线的结果一致。相比于PCR检测,16SrⅠ-LAMP检测的灵敏度提高了8倍;16SrⅠ-LAMP能够快速检测出来自不同区域的田间泡桐发病样品、感病泡桐组培苗和嫁接传病脱毒苗。【结论】以tuf基因作为靶标,建立能同时检测5种16SrⅠ组植原体的环介导恒温扩增技术,具有高效、特异、操作简便、检测时间短及成本较低等优点,适合于基层和现场检测。  相似文献   

2.
绣线菊丛枝病病原的分子鉴定   总被引:1,自引:0,他引:1  
用植原体16S rRNA基因的通用引物,对表现黄化、丛枝、顶枯等症状的绣线菊DNA进行PCR扩增,得到了约1.2kb的特异性片段.测序结果证明其病原为植原体.RFLP和序列分析表明:该分离物属于翠菊黄化组的16SrⅠ -B亚组.与GenBank中其他植原体分离物序列比较,发现该分离物与16SrⅠ -B亚组中的西方翠菊黄化植原体(SAY)同源性高达99.6%.  相似文献   

3.
实验应用PCR扩增、iPhyClassifer分析、序列同源性及系统发育分析等方法对海南省灰叶丛枝病病害进行了分子检测及其病原的鉴定、系统进化研究.iPhyClassifer结果显示:灰叶丛枝病植原体为花生丛枝组(16SrⅡ组)16SrⅡ-A成员.序列同源性分析结果表明:灰叶丛枝病植原体与16SrⅡ、16SrⅡ-A成员...  相似文献   

4.
【目的】16SrI组植原体对我国作物和生态植物危害严重。目前植原体尚不能分离培养,对于我国植原体不同株系间遗传变异和种群结构尚不清晰,通过多位点序列分析(MLSA)揭示我国不同地区16SrI组不同植原体株系的遗传多样性及其地理分布特征,比较不同植原体株系间不同持家基因的变异程度,为我国不同植原体株系的检测、分类鉴定和系统发育研究提供一定的参考方法和依据。【方法】应用rp,tuf,secA,secY,ipt,dnaK,fusA,gyrB,pyrG和rpoB共10个持家基因序列,结合16S rDNA序列,以全基因序列已完成的洋葱黄化植原体(OY-M)、翠菊黄化丛枝植原体(AYWB)、澳大利亚葡萄黄化植原体(CPA)、草莓致死黄化植原体(SLY)和苹果簇生植原体(CPM)共5种植原体株系为参照,分析我国10个省(市)苦楝丛枝、莴苣黄化、桑萎缩、泡桐丛枝和长春花绿变植原体株系(共18株)的遗传变异规律和系统发育关系,通过多重序列比对分析不同基因片段的序列多态性和变异程度。【结果】我国18株苦楝丛枝、莴苣黄化、桑萎缩、泡桐丛枝和长春花绿变植原体株系的rp,tuf,secA,secY,ipt,dnaK,fusA,gyrB,pyrG和rpoB多位点序列共有15种序列类型,从而揭示16SrI组不同植原体株系间丰富的遗传多样性。基于rp等10个基因多位点序列分析可将16SrI-B、D亚组的不同植原体株系清晰地分开。10株苦楝丛枝植原体株系与2株桑萎缩植原体株系系统发育关系最近,多位点序列分析可将这2种基于16S rDNA序列难以区分的植原体株系清晰地区分。10株苦楝丛枝植原体株系分为4个进化枝,其多位点序列存在8种序列类型,这4个分枝与植原体株系的地理分布关系密切。与我国长春花绿变和泡桐丛枝植原体株系相比,福建三明2株莴苣黄化植原体株系与日本洋葱黄化植原体株系OY-M系统发育关系较近。在已检测分析的植原体不同基因序列片段中,dnaK基因序列片段的变异水平最高。【结论】多位点序列分析可做为一种对植原体鉴定、区分以及株系遗传多样性全面检测的有效、可靠方法。在以后的研究中该方法可广泛应用于深入探讨植原体不同组间或亚组间株系的遗传变异和系统发育关系。  相似文献   

5.
植原体(Phytoplasma)是一类无细胞壁,迄今不能人工培养,存在于植物筛管细胞中的类似植物病原细菌的原核生物.据估计,植原体可在98个科,几百种植物上引起病害(Lee et al.,2000),主要症状包括丛枝、黄化、花变叶、花器退化等,严重时使植株提早衰老,直至整株枯死.  相似文献   

6.
早竹丛枝病的调查及病原菌的分子鉴定   总被引:1,自引:1,他引:0       下载免费PDF全文
[目的]对早竹丛枝病进行调查及病原菌分子鉴定,为早竹丛枝病的病害诊断和防治提供科学依据。[方法]采用单株水平和单枝盘水平的2种病害分级标准对早竹丛枝病进行调查。使用植原体16S rDNA和真菌rDNA-ITS序列的特异性PCR引物,对早竹丛枝病的病原菌进行分子鉴定。[结果]调查的6块样地早竹丛枝病的平均发病率为18.59%,平均病情指数为6.67。感病的早竹DNA样品能够扩增出真菌的rDNA-ITS序列,而不能够扩增出植原体的16S rDNA序列;扩增出的序列与报道的竹针孢座囊菌的序列同源性达到99.00%,与其它真菌的序列同源性最高仅为94.00%。[结论]浙江省德清县早竹丛枝病的病原菌为竹针孢座囊菌。  相似文献   

7.
分别从河北唐县赞皇大枣、辽宁凌源梨枣和河南濮阳扁核酸3个品种的枣疯病和来自山东、江西和北京的不同无性系的泡桐丛枝病树上采集丛枝枝条作为组织培养材料,获得的枣疯病和泡桐丛枝病组培苗皆表现典型的丛枝症状。其中感染植原体的赞皇大枣组培苗(Ft)和扁核酸组培苗(HPD)在未加任何激素的MS培养基和其它培养基交替继代培养1a以上仍能维持丛枝苗生长;而发病梨枣(LD)除产生丛枝外,还出现叶片黄化和植株矮化、枯梢等衰退症状。泡桐丛枝病植原体可在不同无性系组培苗上通过各种培养基交替和单纯的MS培养基继代培养,并已在实验室内连续保藏达10a,其引致丛枝症状的能力无明显的改变。用枣树Ft染病材料作接穗,以健康冬枣(DJ)和抗病婆枣(W14)砧木进行组培苗间嫁接传病试验,可使部分DJ和W14发病;而嫁接未发病的砧木多数像健苗一样正常生长。用感染山东泡桐丛枝病植原体ZD株系丛枝组培苗为接穗,嫁接健康泡桐无性系组培苗致使无性系MB33、TY2T和C125发病。用植原体16SrDNA通用引物进行PCR,确证了泡桐和枣树发病苗和嫁接发病组培苗体内存在植原体。用DAPI荧光显微镜技术比较组培苗韧皮部筛管中的植原体浓度,结果显示,Ft和嫁接发病冬枣(DJ-Ft)筛管中植原体浓度相对较高,但仍低于各泡桐无性系染病丛枝组培苗;HPD和LD浓度中等,而发病的W14砧木含有植原体的筛管数量较少、且浓度很低。在嫁接不成功或未发病的DJ和W14砧木组织及健康对照组织中皆检测不到植原体荧光。  相似文献   

8.
针对柳树枝条因原核生物植原体引起的畸形,丛枝、小叶等表现和枝条感病部位后期表现出增生及木质化现象。通过2年对该病害的特性和发生规律进行观测,开展了以四环素与阿维菌素复配法防治柳树植原体病害的试验研究。综合试验结果表明,采用树木输液法可有效的控制植原体对柳树的危害。  相似文献   

9.
《林业科学》2021,57(5)
【目的】了解羽脉山黄麻丛枝病在云南省玉溪市新平县的发生情况和危害程度,通过分子生物学方法确定病原物及其分类地位,为本地区植原体防控提供参考。【方法】利用普查法获得病害发病率,评估病害危害程度。利用植原体通用引物P1/P7及R16F2n/R16R2对感病植株总DNA进行巢式PCR扩增、克隆和测序,得到16S r DNA序列。再用植原体在线分类鉴定工具i PhyClassifier以及MegaX软件分别进行序列分析和构建基于16S r DNA序列的系统进化树,确定病害病原物及其分类地位,通过在线分析软件MUSCLE比较相关序列的同源性。【结果】根据调查发现羽脉山黄麻丛枝病发生于大约101°35'—101°53'E和23°56'—24°20'N之间,主要是在低海拔400~600 m温度相对较高的干热河谷地区,说明高温有利于植原体病害的发生。该处连续3年发生此病害,2018年7月调查得知其平均发病率为38.9%,属中度危害。PCR扩增获得约1 246 bp的羽脉山黄麻丛枝病植原体16S r DNA序列(株系:TLWBYN01,登录号:MN513329)。分析表明TLWBYN01与翠菊黄化植原体(Candidatus Phytoplasma asteris)的参考菌株(M30790)相似度为99.8%,因此该植原体为‘Candidatus Phytoplasma asteris’相关菌株,属于16S r I组成员。TLWBYN01的F2nR2片段虚拟RFLP模型与16S r I-X亚组的参考模型番木瓜束顶植原体(登录号:JF781308)最为相似,相似系数为0.98,17种限制性内切酶的酶切图谱显示与16S r I-X参考株只有MseI不同,因此该植原体属于16S r I-X亚组的变种。比较得出TLWBYN01与16S r I-X亚组成员番木瓜束顶植原体(JF781308)和印度葫芦植原体(LT594117、LT594118)同源性分别为99.2%和99.6%。【结论】玉溪市新平县发现的羽脉山黄麻丛枝病属局部常发病害,中度危害,但一旦感染,就会严重影响植物生长。羽脉山黄麻丛枝植原体属16 Sr I组成员,也是报道较少的植原体16S r I-X亚组的一个变种,且羽脉山黄麻为新发现的植原体新寄主。  相似文献   

10.
植原体检测和鉴定技术   总被引:1,自引:0,他引:1  
植原体是一种广泛传播的植物病害病原,在世界范围内造成了非常大的经济损失。各国的研究人员对植原体造成的病害,一直进行着不懈研究。利用传统的组织和化学检测技术,取得了很多研究成果。随着现代生物技术的飞速发展,人们又建立了许多植原体的鉴定和检测的新方法,为探索植原体的遗传特征和生物学特性,提供了技术基础。本文就植原体被发现以来,对此病害检测和鉴定技术的发展进行论述。  相似文献   

11.
In September 2019, two diseased plants of Campsis grandiflora showing the main symptom of witches' ‐broom (CgWB) were found in a nursery garden in Yangling, Shaanxi province, China. Partial 16S ribosomal RNA (F2nR2 region) and ribosomal protein (rp) genes of phytoplasmas were generated from the symptomatic plants by PCR amplification, and phytoplasma bodies were observed in the sieve tube elements of the CgWB samples under a transmission electron microscope, indicating phytoplasma infection in the two CgWB plants. Restriction fragment length polymorphism analysis of the F2nR2 region and similarity coefficient results suggested that the two associated phytoplasmas belong to two novel subgroups of 16SrI (aster yellows) group, designated as AK and AL. On the reconstructed phylogenetic trees based on F2nR2 regions and rp genes of phytoplasmas, respectively, the CgWB‐associated phytoplasmas clustered together with members of 16SrI subgroups. This was the first record of phytoplasmas infecting C. grandiflora worldwide.  相似文献   

12.
During the summer of 2018, one Syringa reticulata plant showing witches' broom and small leaves was observed in Beijing, China. Molecular diagnostic tools and electron microscopic cell observation were used to detect the possible pathogen of this disease. As a result, the phytoplasma in the symptomatic S. reticulata tree was confirmed by amplifying the 16S rRNA gene using the phytoplasma‐specific universal primer pair R16mF2/R16mR1 and observation with transmission electron microscopy. The rp and tuf genes of the phytoplasma were also cloned and sequenced as the 16S rRNA gene. Sequence and phylogenetic analyses of the 16S rRNA, rp and tuf genes indicated that the phytoplasma associated with S. reticulata witches' broom (SrWB) disease belonged to the 16SrV‐B subgroup, and it was closely related to the 16SrV‐B subgroup phytoplasma strain jujube witches' broom, which causes serious disease of jujube fruit trees in China. This study shows the S. reticulata tree as a new host of a phytoplasma belonging to the 16SrV‐B subgroup in China.  相似文献   

13.
In the neighbouring regions Basilicata, Campania, and Calabria of southern Italy, diseased trees of European field elm (Ulmus minor) were examined for phytoplasmal infection using polymerase chain reaction (PCR) technology. All affected trees examined tested positively. Using a primer pair specific for the EY phytoplasma group and restriction fragment length polymorphism (RFLP) analysis of PCR-amplified ribosomal DNA, the organism detected was identified as the elm yellows (EY) phytoplasma. RFLP analysis of PCR-amplified ribosomal DNA was also employed to attempt differentiation within the EY group which includes, in addition to the EY agent, phytoplasmas infecting Rubus, alder, eucalypts, Spanish broom, and grapevine. Following separate digestion with AluI, RsaI, Sau3AI, MseI, HhaI, and KpnI, all PCR-products from EY-group phytoplasmas examined had similar RFLP profiles. When the same ribosomal DNA fragments were digested with TaqI restriction endonuclease, three different restriction profiles were detected among the EY-group phytoplasmas. These profiles represented, respectively, (1) the EY phytoplasma (2) the phytoplasmas causing rubus stunt and being associated with alder yellows, spartium witches broom, and eucalyptus little leaf, and (3) the flavescence dorée phytoplasma. RFLP analysis using TaqI endonuclease enabled for the first time the differentiation of the phytoplasmas associated with alder yellows, eucalyptus little leaf, and spartium witches broom from the EY agent.  相似文献   

14.
Elm samples with and without witches’‐broom symptoms (EWB) were collected from Tai’an and Zhaoyuan, Shandong Province, China. Phytoplasmal cells were observed in the phloem cells of symptomatic plants under electron microscope. Specific fragments of about 1.2 kb in length were amplified with nested‐PCR from symptomatic samples, while no fragment was obtained from healthy plants. The 16S rRNA gene sequences of the phytoplasmas associated with elm witches’‐broom in Tai’an (EWB‐TA) and Zhaoyuan (EWB‐ZHY) had high similarities, and formed a sublineage in phylogenetic tree, with members of subgroup B or D of aster yellows group (16SrI). Computer simulated restriction fragment length polymorphism analysis of 16S rRNA gene revealed that EWB‐TA and EWB‐ZHY patterns had similarity coefficients of 1.00 with the pattern from the representative strains of subgroup 16SrI‐B, and had a similarity coefficient of lower than 0.97 with representatives of other subgroups. These results indicated that the phytoplasma strain associated with elm witches’‐broom in China was very closely related to ‘Candidatus Phytoplasma asteris’ OAY, belonging to subgroup‐B of aster yellows group (16SrI‐B). This is the first report of a phytoplasma associated with elm witches’‐broom disease in China.  相似文献   

15.
从我国20种感病植物中扩增植原体16S rDNA片段及其RFLP分析   总被引:13,自引:1,他引:13  
本研究收集了20种感染植原体的植物材料,从患病材料和相应健康植物组织中提取总DNA用作PCR模板,选择两对通用引物进行巢式PCR,扩增植原体的16SrDNA片段,回收扩增产物,通过限制性酶切片段长度多态性(RFLP)分析进行分类。20种患病植物材料中的植原体有13种属于翠菊化种,2种属于白对黄化种,3种属于花生丛枝种,2种属于三叶草丛生种。  相似文献   

16.
This article reports Salix tetradenia Hand.‐Mazz as a new host of Candidatus phytoplasma and demonstrates its association with witches' broom disease on S. tetradenia plants. Plants exhibited typical visual symptoms of phytoplasma with virescence, abnormality of flowers and witches' broom, and phytoplasma bodies were observed by transmission electron microscopy. Products of 1.2 kb were amplified by nested PCR using phytoplasma universal primer pairs R16F2n/R16R2, but no amplification products were obtained from symptomless plants. The sequence analysis of three 16S rDNA isolates showed 99.84%, 99.68% and 99.76% identify, respectively, with the homologous gene (nc_005303) of member of ‘Candidatus phytoplasma asteris’ (16SrI) group. Phylogenetic and virtual computer‐simulated restriction fragment length polymorphism analysis of the 16S rRNA, tuf and rp gene sequences confirmed that this phytoplasma clustered in the 16SrI‐B subgroup. These results indicated that the diseased S. tetradenia plants were infected by a phytoplasma of the 16SrI group. This is the first report on the occurrence of phytoplasma disease on S. tetradenia worldwide.  相似文献   

17.
正基因芯片技术因能对生物样本进行快速、高通量的定性和定量分析,而在植物病害诊断中也得到普遍的应用[1]。树木溃疡病是指引起木本植物树皮上出现溃疡腐烂等症状的病害[2]。引起杨树溃疡病的真菌种类较多,加之其无性型和有性型多样,所以,关于杨树溃疡病病原菌的报道多有不同。另外,受地理位置、寄主植物关系及分类体系的限制,迫切需要发展不依赖于常规分离培养的病原鉴定新技术。  相似文献   

18.
A disease of Populus nigra‘Italica’ associated with foliar yellowing, sparse foliage, stunting, dieback, and decline was observed in south-western Germany; a witches’ broom disease of Populus alba that is known in other countries was also detected in Hungary and Germany. The aetiology of the diseases was studied by fluorescence microscopy and polymerase chain reaction (PCR) amplification. Using fluorescence microscopy, phytoplasmas could be detected only in P. alba. However, most diseased trees of P. nigra‘Italica’ tested phytoplasma-positive by PCR. In some of the trees the phytoplasma numbers were so low that nested PCR was required to detect the infection. Very low phytoplasma numbers were also observed in diseased Populus tremula. The identity of phytoplasmas from P. nigra‘Italica’ sampled in Germany and France, P. alba and also P. tremula was examined by restriction fragment length polymorphism (RFLP) analysis of PCR-amplified ribosomal DNA. In all poplars, phytoplasmas of the aster yellows group were detected. However, three different RFLP groups were identified that consisted of (1) French strains from P. nigra‘Italica’, (2) German strains from P. nigra‘Italica’ and (3) strains from P. alba and P. tremula. The profile observed in the last group was probably the result of sequence heterogeneity in the two 16S RNA genes.  相似文献   

19.
The genus ‘Candidatus Phytoplasma’ comprises wall‐less bacteria colonizing the phloem of plants and insect tissues. Phytoplasmas are associated with diseases in over 1000 plant species worldwide, including many important crops as well as forest trees. Alder yellows (AldY) phytoplasma, which frequently infects Alnus spp., is closely related to the economically important phytoplasma causing Flavescence dorée (FD) in grapevines. In a natural habitat (Spreewald, Brandenburg, Germany), 57 Alnus glutinosa (black alder) trees were examined for phytoplasma infection in summer 2013. No phytoplasma typical infection‐associated symptoms such as yellowing and decline were observable in this natural swamp‐alder area. Amplification followed by a restriction fragment length polymorphism, and a sequence analysis of the 16S rDNA, allowed for the detection of AldY phytoplasmas in all examined trees and their assignment to the taxonomic group 16SrV‐C. Additional analyses of the non‐ribosomal marker gene methionine aminopeptidase (map) revealed diverse strains as well as mixed infections with closely related AldY strains, and the strains were assigned to phylogenetic clusters closely related to German Palatinate grapevine yellows, AldY or FD strains. The results confirmed that AldY phytoplasmas infection in A. glutinosa is prevalent. The results also indicate a presence of an established phytoplasma population in chronically infected black alder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号