首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
以莰烯醛肟与卤代物为原料经亲核取代反应合成了9个未见报道的莰烯醛O-取代肟类化合物,分别为2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-苄基肟(2a)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-丁基肟(2b)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-(4-氯丁基)肟(2c)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-(3-溴苄基)肟(2d)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-(4-叔丁基苄基)肟(2e)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-(4-氯苄基)肟(2f)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-(4-氰基苄基)肟(2g)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-(2,6-二氯苄基)肟(2h)、2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛O-(邻氟苄基)肟(2i)。利用FT-IR、GC-MS、1H NMR以及13C NMR对产物结构进行了表征。以化合物2a为例,探索了不同工艺条件对产物得率的影响,在甲苯为溶剂,n(莰烯醛肟)∶n(氯化苄)∶n(四丁基溴化铵)为1.0∶1.8∶0.08,反应温度为60℃,反应时间为20 h的最佳工艺条件下,产物的得率为84.1%。通过体外抗肿瘤活性测试,探讨了化合物2a^2i对肝癌细胞HepG2和人乳腺癌细胞MCF7的抑制作用,结果表明:化合物2b对HepG2细胞的抑制作用较好,其半数抑制浓度(IC 50)值为36.3μmol/L;化合物2d、2h、2i对MCF7有一定的抑制作用,其中化合物2h对MCF7的抑制作用较好,其IC50值为19.2μmol/L。  相似文献   

2.
以2-(3,3-二甲基双环[2.2.1]庚-2-亚基)乙醛肟(莰烯醛肟)和苯乙烯为原料,通过环加成反应合成了未见报道的3'-(3,3-二甲基双环[2.2.1]庚-2-亚基)-5'-苯基-异噁唑啉,并采用FT-IR、GC-MS、~1H NMR以及~(13)C NMR等手段对产物进行表征,确定了产物结构。探讨了溶剂种类、催化剂种类及用量、氧化剂过硫酸氢钾复合盐(Oxone)用量、苯乙烯用量以及反应时间对反应转化率和得率的影响,得到适宜的工艺条件为:50%甲醇为溶剂,氯化钾为催化剂,n(莰烯醛肟)∶n(氯化钾)∶n(Oxone)∶n(苯乙烯)=1.0∶0.5∶1.5∶2.0,反应时间10 h,在此条件下,产物得率为88.07%。  相似文献   

3.
研究了以β-蒎烯为原料合成3-亚甲基诺蒎酮的反应.以丙酮为溶剂,以酸性高锰酸钾为氧化剂,β-蒎烯经选择性氧化生成诺蒎酮,研究了氧化剂体系、溶剂体系、反应温度和反应时间对β-蒎烯氧化选择性及诺蒎酮得率的影响.采用KOH为催化剂、37%甲醛水溶液为羟甲基化试剂与诺蒎酮进行羟醛缩合反应得到3-亚甲基诺蒎酮,探讨了诺蒎酮与甲醛物质的量之比、催化剂种类及用量、溶剂体系、反应温度以及反应时间等因素对反应的影响,并采用正交试验法优化了羟醛缩合反应工艺,并确定了适宜的合成工艺条件:n(甲醛)与n(诺蒎酮)为21∶1,n(KOH)与n(诺蒎酮)为1.5∶1,反应在无溶剂存在下进行,反应温度65 qc,反应时间2h.在此工艺条件下,3-亚甲基诺蒎酮得率大于92%.采用GC-MS、FT-IR、1H NMR、13C NMR等手段对合成所得产物的化学结构进行了分析测定.  相似文献   

4.
以异长叶烯酮为原料,经肟化反应合成了异长叶烯酮肟。分别采用单因素法及正交试验法考察了工艺条件对反应产率的影响,确定了最佳工艺条件为:反应时间6 h,反应温度76℃,以醋酸钠为催化剂,n(异长叶烯酮)∶n(盐酸羟胺)∶n(催化剂)1∶1.3∶0.55。在此条件下,异长叶烯酮肟的产率>99%。采用FT-IR、~1H NMR、GC-MS和单晶X衍射等分析手段对化合物的结构进行了表征,研究了异长叶烯酮肟对几种金属离子的络合性能,结果表明:异长叶烯酮肟与Cu2+的作用明显强于与Co2+、Cd2+、La3+、Pb2+、Ag^+等金属离子的作用;异长叶烯酮肟与Cu2+主要是通过分子中氮原子和氧原子与Cu2+的配位作用进行络合。  相似文献   

5.
以α-蒎烯为原料,先将α-蒎烯选择性氧化制备马鞭草烯酮,再经羰基的肟化和O-磺酰化反应,合成得到22个未见文献报道的马鞭草烯酮基磺酸肟酯化合物(4a~4v)。通过FT-IR、1H NMR、13C NMR和ESI-MS对化合物结构进行了分析和表征,并测试了目标化合物的抑菌活性。抑菌活性测试表明,在质量浓度50 mg/L时,目标化合物对8种供试病菌有一定的抑制活性,其中目标化合物马鞭草烯酮基正丁基磺酸肟酯(4u)对水稻纹枯病菌(Rhizoctonia solani)的抑菌率达83.2%,化合物马鞭草烯酮基2,4-二氟苯磺酸肟酯(4d)对小麦赤霉病菌(Fusarium graminearum)的抑菌率达89.6%(优于阳性对照百菌清),化合物马鞭草烯酮基对-硝基苯磺酸肟酯(4n)和4u对花生褐斑病菌(Cercospora arachidicola)的抑菌率均为72.5%。  相似文献   

6.
以异长叶烯酮为原料,以浓硫酸为磺化剂,合成异长叶烯酮磺酸(IFSA),并以二丙二醇甲醚(DPM)和乙酸(HAc)的酯化反应为模板,探索了IFSA对酯化反应的催化性能。采用GC、GCMS、FT-IR、HPLC、~1H NMR、^(13)C NMR、X射线单晶衍射等分析手段对合成产物进行了定性和定量分析,对产物的结构也进行了表征。异长叶烯酮磺化反应过程中,研究了加料顺序、浓硫酸用量、反应温度、乙酸酐用量等对磺化反应的影响,异长叶烯酮适宜的磺化条件为:n(异长叶烯酮)∶n(浓硫酸)为1∶1.4,以乙酸酐为溶剂,m(异长叶烯酮)∶m(乙酸酐)为1∶2.0,反应温度40℃。在此条件下反应40 min异长叶烯酮磺酸得率为82.36%。以DPM与HAc酯化反应为模板,实验结果表明IFSA的催化效果优于其他催化剂;研究了IFSA用量、反应温度、反应时间、环己烷用量等对酯化反应的影响,确定了适宜的酯化工艺条件:以0.1 mol的二丙二醇甲醚为基准,当n(DPM)∶n(HAc)为1∶1.5,m(IFSA)∶m(DPM)为0.045∶1,环己烷用量24 L,反应温度90℃,反应时间6 h。在此反应条件下,二丙二醇甲醚乙酸酯(DPMA)得率为96.69%,催化剂IFSA重复利用3次时,DPMA得率还能达到90.07%。  相似文献   

7.
以异长叶烯酮为原料,以浓硫酸为磺化剂,合成异长叶烯酮磺酸(IFSA),并以二丙二醇甲醚(DPM)和乙酸(HAc)的酯化反应为模板,探索了IFSA对酯化反应的催化性能。采用GC、GCMS、FT-IR、HPLC、~1H NMR、~(13)C NMR、X射线单晶衍射等分析手段对合成产物进行了定性和定量分析,对产物的结构也进行了表征。异长叶烯酮磺化反应过程中,研究了加料顺序、浓硫酸用量、反应温度、乙酸酐用量等对磺化反应的影响,异长叶烯酮适宜的磺化条件为:n(异长叶烯酮)∶n(浓硫酸)为1∶1.4,以乙酸酐为溶剂,m(异长叶烯酮)∶m(乙酸酐)为1∶2.0,反应温度40℃。在此条件下反应40 min异长叶烯酮磺酸得率为82.36%。以DPM与HAc酯化反应为模板,实验结果表明IFSA的催化效果优于其他催化剂;研究了IFSA用量、反应温度、反应时间、环己烷用量等对酯化反应的影响,确定了适宜的酯化工艺条件:以0.1 mol的二丙二醇甲醚为基准,当n(DPM)∶n(HAc)为1∶1.5,m(IFSA)∶m(DPM)为0.045∶1,环己烷用量24 L,反应温度90℃,反应时间6 h。在此反应条件下,二丙二醇甲醚乙酸酯(DPMA)得率为96.69%,催化剂IFSA重复利用3次时,DPMA得率还能达到90.07%。  相似文献   

8.
异长叶烷酮合成新型喹唑啉衍生物的研究   总被引:1,自引:0,他引:1  
以异长叶烷酮为原料,叔丁醇作溶剂,通过缩合得到7-(4'-氟苯亚甲基)异长叶烷酮(FBI),再与盐酸胍环化合成了喹唑啉衍生物4-(4'-氟苯基)-6,6,10,10-四甲基-6a,9-桥亚甲基-5,6,6a,7,8,9,10,10a-八氢苯并[h]喹唑啉-2-胺(FBQ),考察了催化剂种类及用量、反应温度、反应时间以及FBI与盐酸胍的物质的量比对环化反应的影响,并通过正交试验法确定了环化反应的适宜工艺条件。最优工艺条件为:以叔丁醇钾为催化剂,n(t-Bu OK)∶n(FBI)为2.9∶1,反应温度75℃,反应时间14 h,FBI与盐酸胍的物质的量比为1∶4,产物得率达到79.51%。采用FT-IR、MS、1H NMR、13C NMR及X射线单晶衍射等分析手段,确定了产物的结构及空间构型。通过X射线单晶衍射法测定表明,化合物属于三斜晶系,P-1空间群,晶包参数a=0.660 85(9)nm,b=1.175 27(16)nm,c=1.340 65(17)nm,α=86.229(3)°,β=83.094(4)°,γ=77.558(4)°,V=1.008 6(2)nm3,Z=2,DC=1.203 g/cm3,F(000)=392,Mr=365.48,μ=0.078 mm-1,R=0.099 3,wR=0.156 5。  相似文献   

9.
以月桂烯与对苯醌为原料,合成了萘二酚衍生物,采用GC-MS、熔点测定、红外光谱和1H NMR等手段对实验产物进行了鉴定,确证产物为6-(4-甲基-3-戊烯基)-5,8-二氢-1,4-萘二酚。利用单因素试验研究了催化剂种类、催化剂用量、溶剂种类、反应温度、反应物物质的量之比和反应时间对产物得率的影响,得到适宜的工艺条件为:n(月桂烯)∶n(对苯醌)1∶1,催化剂为氯化锌,其用量为对苯醌质量的15%,溶剂为乙酸乙酯,反应温度80℃,反应时间10 h。在上述条件下,反应选择性较高,产物得率为81.0%。  相似文献   

10.
以β-蒎烯为原料,先经氧化反应合成诺蒎酮,诺蒎酮与水杨醛进一步经羟醛缩合反应合成了3-(2'-羟基亚苄基)诺蒎酮,通过单因素和正交试验优化了缩合反应的工艺条件。结果表明:缩合反应的优化工艺条件为:诺蒎酮1.43 g,以30 m L叔丁醇为溶剂,2.5 g叔丁醇钾为催化剂,n(诺蒎酮)∶n(水杨醛)为1.0∶1.2,回流反应2 h,产物得率为79.46%。采用MS、IR、NMR、X射线单晶衍射等对3-(2'-羟基亚苄基)诺蒎酮的结构进行了表征,确认了化合物的结构,该化合物的晶体属单斜晶系,P212121空间群。对3-(2'-羟基亚苄基)诺蒎酮的酸碱指示性能进行了研究,结果表明:该化合物滴定0.257 4 mol/L盐酸标准溶液时,指示颜色为橘黄色,测定的盐酸浓度为0.259 6 mol/L,RSD为0.089%,滴定的灵敏度高、偏差小,效果优于酚酞指示剂。  相似文献   

11.
将α-蒎烯选择性氧化制备马鞭草烯酮,对羰基进行肟化和分离,再发生亲核取代反应,合成得到40个新型(Z)-/(E)-马鞭草烯酮肟醚(4a~4t,包括20对Z/E异构体),采用~1H NMR、~(13)C NMR、FT-IR、UV-vis和ESI-MS对目标化合物进行了结构表征,并测试其抑菌活性。研究结果表明:在质量浓度50 mg/L下,目标化合物对8种植物病原菌均显示出不同程度的抑菌活性,其中化合物(E)-4r(R=2,6-Cl)对苹果轮纹病菌的抑制率为77.8%,化合物(E)-4s(R=2,6-F)对水稻纹枯病菌的抑制率为72.7%,化合物(E)-4n(R=p-CN)对玉米小斑病菌的抑制率为70.8%,(Z)-/(E)-异构体对一些植物病原菌的抑制活性显示一定差异。建立了(E)-马鞭草烯酮肟醚化合物对水稻纹枯病菌抑制活性的CoMFA模型(r~2=0.992,q~2=0.507),进行3D-QSAR研究,结果表明建立的模型可用于设计具有潜在高活性的先导化合物。  相似文献   

12.
松香基季铵盐双子表面活性剂的合成及分析   总被引:5,自引:0,他引:5  
松香(酸值170.54mgKOH/g)与环氧氯丙烷反应,合成中间产物3-松香酰氧基-2-羟丙基氯,再与四甲基乙二胺反应,制备了松香基季铵盐双子表面活性剂(GSRP);用FT—IR对产物结构进行了鉴定,并对其性能进行分析。研究结果表明:中间产物3-松香酰氧基-2-羟丙基氯的酯化率为99.18%;GSRP的合成反应条件为:摩尔比2.2:1(n中间产物:n-四甲基乙二胺),温度85℃,时间20h,产物得率为76.70%,纯度为96.10%;GSRP的分水时间为16min;临界胶束浓度为1.42×10^-4mol/L,表面张力为36.69mN/m:发泡力为200mm。泡沫稳定性好。  相似文献   

13.
制备了一种酸功能化离子液体1-(3-磺酸基)丙基-3-甲基咪唑磷酸二氢盐((HSO3-pmim) H2 PO4),并用FT-IR、 1 H NMR、 13 C NMR对其进行了表征.将其同氯乙酸构成的复合催化体系磺烷基咪唑磷酸盐-氯乙酸((HSO3-pmim)H2 PO4-ClCH2 COOH)用于催化α-蒎烯水合反应,详细考察了水合反应的影响因素,得到了较佳的反应条件:n(α-蒎烯)∶ n((HSO3-pmim)H2 PO4)∶ n(氯乙酸)∶ n(水) 6∶ 1∶ 6∶ 30,反应温度 80 ℃,反应时间 8 h.在该条件下α-蒎烯转化率为 97%,松油醇选择性 47.1%.并对催化体系的重复使用性进行了考察,该催化体系不经处理直接重复使用5次时,α-蒎烯转化率仍达 83.7%,松油醇选择性 51.6%.  相似文献   

14.
以松节油主要组分3-蒈烯为原料首先合成了3-异丙基-5-甲酚(1)和香芹酚(2),从这2个化合物出发通过异氰酸酯法(方法A)和氨基甲酰氯法(方法B)进一步制备了14个含异丙基甲酚结构的氨基甲酸酯类化合物,并测定了所合成16个化合物对乙酰胆碱脂酶(AChE)的抑制活性。研究结果表明:酚类化合物与异氰酸酯反应是制备氨基甲酸酯的高效合成工艺,其中异氰酸酯中N-取代基结构越大反应越容易发生,芳基取代产物的摩尔得率可达90%以上。在AChE抑制活性方面,3-异丙基-5-甲酚衍生物的抑制活性普遍高于香芹酚衍生物,N-脂基取代产物的抑制活性显著高于N-芳基取代产物,且短链脂基取代产物的抑制活性高于长链脂基和环脂基。3-异丙基-5-甲酚的N-甲基取代产物表现出优良的AChE抑制活性,抑制效率达到石杉碱甲的90.5%,超过同为氨基甲酸酯阳性对照利凡斯的明(89.6%),而其N,N-二甲基取代产物的抑制活性又明显高于N-甲基取代产物,抑制效率达到石杉碱甲的97.9%。浓度与抑制率关系表明:3-异丙基-5-甲基苯基-N,N-二甲基氨基甲酸酯(Ⅰ-2)在浓度大于1.25 mmol/L后表现出与石杉碱甲基本等同...  相似文献   

15.
以异长叶烷酮为原料,与水合肼合成异长叶烷基席夫碱,采用单因试验和正交试验考察了不同条件对反应的影响。结果表明,以异长叶烷基席夫碱的得率为考察指标,其合成的最佳工艺条件为:以无水乙醇为反应溶剂,催化剂浓硫酸的用量0.6%(以总物料的体积为基准),反应温度78℃,反应时间24 h,n(异长叶烷酮)∶n(水合肼)为1∶5,此条件下的得率为87.84%。采用GC-MS、FT-IR和1H NMR等手段对所得产物进行了分析与表征,证明合成了异长叶烷基席夫碱。  相似文献   

16.
以天然亚茴香基丙酮为原料,Lewis酸为催化剂,环己烷为氢源,研究了天然茴香基丙酮的合成工艺,并探讨反应机理和反应的选择性。对不同Lewis酸催化剂与溶剂进行筛选,确定Al Cl3为催化剂,CH2Cl2为溶剂,采用正交试验方法对茴香基丙酮合成工艺进行优化,得到最佳工艺条件。在反应温度35℃,反应时间4 h,n(Al Cl3)∶n(亚茴香基丙酮)4∶1,n(环己烷)∶n(亚茴香基丙酮)4∶1的条件下反应稳定性较好,产物得率达95.1%。采用IR、GC-MS和1H NMR等分析技术对合成所得产物进行了表征。  相似文献   

17.
甲基紫罗兰酮环化合成的研究   总被引:1,自引:0,他引:1  
以固载强酸TiO2/SO4^2—为催化剂,用假性异甲基紫罗兰酮合成甲基紫罗兰酮的新方法,提高了α—异甲基紫罗兰酮的收率,获得了最佳反应条件:投料比n(假性异甲基紫罗兰酮):n(二甲苯):n(硫酸)=1:3.5:0.04,控制反应温度15—25℃,反应时间1.5h。该优化条件下,合成收率为92%-93%,产物中α—异甲基紫罗兰酮占77(wt)%左右。  相似文献   

18.
研究了SO42-/TiO2-ZrO2型固体超强酸催化剂的制备及其催化β-月桂烯与马来酸酐的Diels-Alder反应,通过GC、GC-MS和红外分析,确定其主产物为4-(4-甲基-3-戊烯基)-4-环己烯-1,2-酸酐。结果表明,该催化剂对β-月桂烯与马来酸酐的Diels-Alder反应有较高的催化活性和较好的选择性。考察了其催化性能的影响因素。结果表明,适宜的催化剂制备条件是:n(钛)∶n(锆)为1∶1,焙烧温度450℃。Diels-Alder反应优化的工艺条件:n(β-月桂烯)∶n(马来酸酐)为1∶1、反应时间4 h、反应温度60℃、催化剂用量1%。该条件下β-月桂烯转化率96.5%,产物选择性94.0%,产物得率90.7%。同时考察了催化剂放置时间对异构产物的影响和催化剂重复使用情况。  相似文献   

19.
甲基柏木酮为柏木系最重要的香料之一,具有珍贵的木香-麝香-龙涎香气息,其中Isomer G成分的香气最为出色,它是由罗汉柏烯先异构为Olefin B,再乙酰化得到。采用溶胶-凝胶法制备二氧化硅负载磷钨酸固体催化剂制备Olefin B,研究磷钨酸负载量、焙烧温度和焙烧时间对催化剂活性的影响,用比表面积及孔径分析(BET)、X-射线多晶衍射(XRD)进行表征;通过单因素及正交试验优化罗汉柏木烯异构反应工艺,并用气相色谱-质谱(GC-MS)联用仪对产物进行表征。研究表明:催化剂制备最佳工艺条件为磷钨酸负载量40%、焙烧温度200℃和焙烧时间3 h时,催化活性最强;异构化单因素最佳条件为反应温度70℃、反应时间7 h、溶剂质量分数50%和催化剂质量分数10%;正交试验最佳工艺条件为反应温度80℃、反应时间7 h、乙酸质量分数50%和催化剂质量分数10%,平均得率58.1%,产物Olefin B(7,10-桥亚乙基-4,4,7-三甲基-1,9-八氢化萘)的选择性为97.7%,催化剂可循环使用3次。  相似文献   

20.
以腰果酚、六氯环三磷腈(HCCP)为原料,利用NaH作为缚酸剂制备了膦腈环核六取代腰果酚(HCPP),并采用H_2O_2/HCOOH体系对HCPP进行环氧化反应得到膦腈环核腰果酚环氧树脂(EHCPP),实验优化了EHCPP的合成条件,并采用FT-IR和~1H NMR对中间产物HCPP和最终产物EHCPP进行了分析和表征。实验结果表明:EHCPP较佳合成条件为以腰果酚的双键为基准,n(双键)∶n(甲酸)=1.0∶1.0,n(双键)∶n(H_2O_2)=1.0∶1.8,催化剂TsOH添加量为1%(以HCPP质量为基准),反应温度65℃,反应时间6 h;此条件下得到的产物EHCPP环氧值为4.1 mmol/g。FT-IR和~1H NMR分析结果表明:实验得到的HCPP和EHCPP的结构与预期结构基本相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号