首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
真姬菇子实体粗多糖提取条件试验   总被引:2,自引:0,他引:2  
姜华  蔡德华  张华卫 《食用菌》2007,29(3):55-56
本文采用超声波破壁和热水浸提的方法提取真姬菇多糖,并对漫提时间、浸提温度、料水比和超声波破壁时间四个主要影响多糖得率的因素进行了试验,确定了提取真姬菇子实体多糖的最佳工艺条件:料水比1:40,超声波时间15 min,浸提温度90℃,浸提时间3 h,真姬菇粗多糖的得率可达到8.45%。  相似文献   

2.
《食用菌》2015,(6)
开展超声波热水浸提法和酶解浸提法制备灵芝提取液的研究。以市售普通干制灵芝为试材,采用超声波浸提时间,热水浸提时间,热水浸提温度,料水比以及不同酶量的单因素试验及正交试验,优化灵芝提取液制备的最佳条件。结果表明:超声波热水浸提最优条件为热水浸提温度为70℃,料水比为1∶25,超声波浸提时间为0.75 h,热水浸提时间为3.25 h,提取液多糖含量为5.23%。酶解浸提最优条件为纤维素酶酶量1.00%,果胶酶酶量3.00%,提取液多糖含量为10.37%。酶解浸提优于超声波热水浸提。  相似文献   

3.
超声波辅助法浸提长根菇多糖工艺的优化   总被引:2,自引:1,他引:2  
采用热水浸提法结合微波辅助法提取长根菇中的长根菇多糖,对影响提取长根菇多糖的工艺参数如浸提温度、浸提时间、料水比等进行单因素试验,并在此基础上设计正交试验,提出提取长根菇多糖最佳工艺条件:温度50℃,时间45 min,次数3次,加水量40mL。  相似文献   

4.
在液料比、水浴浸提时间、水浴浸提温度、微波处理时间单因素试验的基础上,应用微波辅助水浸提法,采用4因素3水平正交实验设计,研究了广西贺州黑木耳多糖的最佳提取工艺.结果表明:以多糖的得率为考察指标筛选黑木耳多糖微波辅助水浸提法的最优提取工艺为:液料比30 mL/g,水浴浸提温度80℃,水浴浸提时间2.0h,微波处理时间3min,在此条件下黑木耳多糖得率为3.972%,低于已报道的其它黑木耳多糖得率,有待进一步研究.  相似文献   

5.
用正交试验法优化毛木耳多糖提取工艺   总被引:3,自引:0,他引:3  
筛选毛木耳多糖的最佳提取条件,并对其免疫功能进行评价。用蒸馏水提取毛木耳多糖,以浸提温度、浸提时间、料水比和浸提次数为主要因素,采用L9(3)4正交试验进行提取工艺的优化,用硫酸-苯酚法测定多糖含量后计算多糖得率,并采用动物试验对获得的毛木耳多糖进行小鼠溶血素抗体生成试验和碳粒廓清试验。影响毛木耳多糖提取的主要因素依次为料水比>浸提次数>浸提时间>浸提温度,毛木耳多糖在100 mg.kg-1剂量下能明显提高小鼠溶血素抗体生成能力和碳粒廓清能力。通过正交试验及其验证试验确定的毛木耳多糖的最佳提取条件为料水比1∶40,浸提次数2次,浸提时间4 h,浸提温度100℃,在此条件下,毛木耳多糖得率可达5.90%,且获得的毛木耳多糖能从体液免疫和细胞免疫2个方面提高小鼠的免疫功能。  相似文献   

6.
研究杏鲍菇菌丝体中多糖的提取工艺,通过单因子试验,分析醇析条件、菌丝体破碎方法和浸提条件对多糖提取率的影响。利用正交试验对浸提温度、浸提时间和料液比进行优化研究。结果表明,影响多糖得率的主次因子依次为浸提温度、浸提时间、料液比。最优提取条件为:3倍体积95%乙醇沉淀8 h以上,超声波处理10 min,浸提温度97℃,浸提时间2 h,料液比1∶8。在应用最佳工艺时的杏鲍菇的多糖得率为6.52%。  相似文献   

7.
桑黄子实体多糖提取条件的研究   总被引:4,自引:0,他引:4  
通过单因子试验和正交试验,研究了桑黄(Phellinus igniarius)子实体多糖的提取条件。结果表明,热水浸提法提取桑黄子实体多糖的最佳条件为料水比1:30(W:V)。提取温度90℃,提取时间3h,乙醇终浓度80%。同时采用超声波法提取桑黄子实体多糖,其多糖得率为4.65%。  相似文献   

8.
为了优化瓦松多糖提取条件,以狼爪瓦松为试材,以水为浸提溶剂,研究了不同浸提时间、不同料水比及不同浸提温度对瓦松多糖提取率的影响。结果表明:较佳的瓦松多糖提取方法为料水比1∶40g·mL~(-1)、温度100℃、浸提3h。  相似文献   

9.
响应面分析法优化枸杞多糖的提取工艺   总被引:2,自引:0,他引:2  
本文以枸杞多糖的提取得率为衡量指标,考察了料液比、浸提温度、浸提时间三种因素对枸杞多糖得率的影响,从而优化了枸杞多糖的提取工艺。最终实验得出提取枸杞多糖的最佳工艺条件为:料液比1:27g/mL,浸提温度81益,浸提时间为2.5h。在此条件下,枸杞多糖得率为5.03%。经过对二次响应面的分析,在最佳工艺参数下,得出枸杞多糖提取获得率的二次回归方程。  相似文献   

10.
采用正交试验,对影响灵芝多糖提取的4个主要因素(料水比、提取温度、提取时间、醇析浓度)进行了最佳工艺条件研究。结果表明,提取灵芝子实体粗多糖采用水提醇沉法,最优工艺条件为:料水比1∶50,提取温度90℃,提取2次,每次提取2h,90%乙醇醇析,3000r/min离心30 min取沉淀,sevage法除游离蛋白,离心取上层液即为灵芝粗多糖溶液。苯酚-硫酸法测定灵芝子实体粗多糖含量约为0.734%,这一含量在全国灵芝子实体多糖含量中处于中等水平,还有待于进一步的研究和开发利用。  相似文献   

11.
荷叶离褶伞是一种具有药用功能的名贵珍稀食用菌。本试验以液体深层发酵法培养荷叶离褶伞,采用热水浸提法从菌丝体中提取多糖,用硫酸一苯酚法显色,在540nm处运用分光光度计测其吸光度值,计算多糖提取率;利用单因素和正交试验对离褶伞菌丝体多糖的提取工艺进行研究,并对其还原能力进行了研究。结果表明,影响荷叶离褶伞菌丝体多糖提取率因素的主次关系是浸提温度〉浸提时间〉料液比〉乙醇体积分数。荷叶离褶伞菌丝体多糖提取最优工艺条件是粉碎度100目、浸提温度90℃、料水比l:80(g·mL^-1)、浸提时间2h、添加3倍95%乙醇醇沉。苯酚一硫酸法测定此最佳提取工艺条件下粗多糖得率可达4.23%。多糖的还原能力均随着多糖质量浓度的提高而提高,与抗坏血酸Vc相比,荷叶离褶伞多糖的还原力较弱。  相似文献   

12.
目前秋葵主要以嫩果荚入菜,秋葵籽的应用及研究尚不充分。秋葵籽富含多糖,是功能食品开发的潜在原料。本文以秋葵籽为研究对象,通过单因素和响应面实验优化热水浸提秋葵籽多糖的工艺参数。结果表明,各因素对热水浸提秋葵籽多糖影响的主次顺序为料液比提取温度提取时间;秋葵籽多糖的最佳提取工艺为提取时间2.3 h,提取温度52℃,料液比1∶10(g/mL),在此条件下多糖提取得率为6.25%,与模型预测值接近。  相似文献   

13.
采用热水浸提法提取血红铆钉菇子实体多糖,并采用单因素试验和正交实验相结合的方法,研究了提取次数、提取温度、提取时间、料液比对血红铆钉菇子实体多糖提取率的影响.结果表明:提取血红铆钉菇多糖的最佳工艺条件为:提取温度100℃、料液比1∶16、提取时间2h,浸提3次,血红铆钉菇子实体多糖的产率可达(7.64±0.15)%.  相似文献   

14.
以菌草灵芝菌糟为试材,采用国家标准、农业行业标准等测定了提取物的粗多糖、三萜类物质、氨基酸等成分含量,并在实验室采用正交实验法对其粗多糖进行提取,研究了不同的料液比、提取温度、提取时间和提取次数对菌糟多糖得率的影响,获得最优化的提取条件,在此基础上优化了菌草灵芝菌糟提取物中试生产工艺。结果表明:菌草灵芝菌糟提取物中主要成分粗多糖含量为24.16%,三萜类物质含量为0.82%,氨基酸总量为6.50%;实验室菌草灵芝菌糟粗多糖的最佳提取条件为料液比1∶20 g·mL~(-1),提取温度100℃,提取时间4 h,提取次数3次,在最佳条件下,菌草灵芝多糖得率为4.45%;确定菌草灵芝菌糟提取物中试提取条件为提取次数3次,第1次料液比1∶10 g·mL~(-1),加热至100℃后保持2 h,第2次料液比1∶8 g·mL~(-1),加热至100℃后保持2 h;第3次料液比1∶6 g·mL~(-1),加热至100℃后保持1.5 h,平均提取得率为20.03%。  相似文献   

15.
正交法优化三种灰树花多糖提取工艺   总被引:2,自引:0,他引:2  
采用正交法,对传统热水浸提法,超声辅助水提法及微波辅助水提法的灰树花多糖提取工艺进行了研究。结果表明:热水浸提法的最佳工艺为pH值75,料水比为1:20,提取温度为100℃,提取时间为4h,醇沉浓度为95%。超声辅助热水授提法的最佳条件为:超声功率400W,超声时间6min,浸提时间2h,应用超声波可提高灰树花多糖提取率13.56%。微波辅助热水浸提法的最佳条件:高功率,微波时间4min,水提2h,可使灰树花多糖提取率升高29.52%。  相似文献   

16.
研究水浸提法提取神秘果叶黄酮类化合物的最佳条件。利用单因素的提取方法,以超纯水为溶剂蒸馏提取,采用NaNO_2-Al(NO_3)_3-NaOH络合吸光法测定黄酮类化合物的浓度;考察了浸提时间、料液比和提取温度对其得率的影响。确定最佳水浸提神秘果叶中黄酮类化合物的工艺参数:浸提时间2.5h、料液比为1︰80(g/m L)、提取温度为100℃,其中提取过程中最高得率为3.4359%。该方法操作简单,重复性好,提取工艺合理,适用于神秘果黄酮类化合物含量的测定。  相似文献   

17.
对影响超声波提取香菇柄多糖得率主要工艺参数如料水比、超声波功率、超声波作用时间进行了单因素比较,并且设计了正交试验,得出提取香菇柄多糖最佳工艺条件:料水比为1∶40,超声波功率为300W,超声波作用时间为4min,粗多糖得率在20%以上。  相似文献   

18.
探究超声波辅助热水浸提法优化提取香菇多糖。以香菇多糖含量为指标,利用单因素试验、Box-Behnken试验设计及响应面分析方法,对香菇多糖提取工艺进行优化,且结合实际情况,获得了香菇多糖最佳提取工艺参数为料液比1∶30,超声提取功率200 W、超声提取温度70℃、热水浸提温度79℃,超声提取时间20 min,热水浸提时间1 h。在此条件下,香菇多糖含量为0.650 g·100^-1g^-1,该结果与建立模型的预测值0.655 g·100^-1g^-1基本相符。  相似文献   

19.
以鲜菌草与灵芝菌丝发酵得到的菌质为试材,采用单因素试验和正交实验对其多糖进行提取,研究了不同的料液比、提取时间、提取温度和提取次数对菌质多糖提取率的影响,获得最优化的提取条件;用Fenton体系和邻苯三酚自氧化体系研究了菌质多糖对羟自由基和超氧自由基清除率的影响。结果表明:影响鲜菌草与灵芝菌丝发酵菌质多糖提取得率的主次因素分别为提取温度料液比提取次数提取时间;最佳提取工艺条件为料液比1∶30g·mL~(-1)、温度100℃、提取时间4h、提取次数3次,以此最佳组合提取鲜菌草与灵芝菌丝发酵菌质多糖时,其得率为4.88%。鲜菌草与灵芝菌丝发酵菌质多糖对羟基自由基和超氧阴离子自由基有明显的清除作用,并且随着多糖浓度的增加,清除能力增强,表明鲜菌草与灵芝菌丝发酵菌质多糖对羟基自由基和超氧阴离子自由基的清除能力与多糖浓度有明显的量效关系。通过相关方程可以得到鲜菌草与灵芝菌丝发酵菌质多糖清除羟基自由基的EC_(50)值为0.461mg·mL~(-1),清除超氧阴离子自由基的EC_(50)值为0.864mg·mL~(-1)。  相似文献   

20.
通过正交实验法优化了红菇子实体多糖热水浸提法的条件为水料比30,浸提温度60℃,浸提时间3h.在此提取条件下,提取率为4.33%.粗多糖经过DEAE-纤维素阴离子交换柱层析得到D1、D2、D3和D4四个组分.研究了红菇粗多糖及其各组分的还原能力、对·OH的清除作用以及清除NO2-的作用,以此来评价该多糖的抗氧化活性.结果表明,红菇多糖具有一定的还原力,对·OH具有明显的清除作用,在体外模拟胃液条件下对NO2-有一定的清除作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号