首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was conducted during the two consecutive kharif seasons of 2011 and 2012 on sandy-loam lateritic soil of Indian subtropics to investigate the impact of integrated nutrient management (INM) on crop productivity, nutrient use efficiency of applied nutrients and soil fertility in restoring sustainability with hybrid rice cultivation. Application of 50% recommended dose of fertilizer (RDF) + 50% recommended dose of nitrogen (RDN) through mustard oil cake (MOC) or 75% RDF + 25% RDN through MOC + biofertilizer recorded significantly higher grain and biomass yields, greater NPK removal and higher partial factor productivity of applied nutrient (PFPN) than those of the crop having 100% RDF, 100% RDN through MOC and 25% RDF + 75% RDN through MOC, which showed very poor performance. The former treatments also improved organic carbon and available NPK contents in soil in spite of greater removal of NPK by the crop. Results of study suggested integrated use of 50% RDF + 50% RDN through MOC or 75% RDF + 25% RDN through MOC + biofertilizer for increasing hybrid rice productivity, PFPN and improving soil fertility for sustainability.  相似文献   

2.
Abstract

Co-application of nano, chemical, and biological fertilizers has been recommended to increase quality and quantity of plants in sustainable production systems. Field experiments (factorial split plot experiment based on completely randomized block design) were conducted during two consecutive years to investigate the effect of nitrogen (nitroxin, urea, and nitroxin + 50% urea) and potassium (without fertilizer, soil and foliar application of potassium nano-chelate, and potassium dioxide) forms on grain yield, physiological traits, oil content, and fatty acids composition of sesame under water stress conditions (normal irrigation, irrigation up to 50% seed ripening and flowering (mild and severe stresses, respectively). Severe water stress was caused decreasing chlorophyll content, grain yield (25.4%), seed oil content (2.87%), and unsaturated fatty acid content, while it increased catalase and peroxidase activities, total carbohydrate, and saturated fatty acids content in compared to the control. As shown, the grain yield in the second year was more than the amount in the first year. The highest grain yield was achieved in co-application of 50% urea and nitroxin in combined with potassium dioxide under normal irrigation during the second year, which showed an increase of 42%, compared to the control treatment. Application of potassium fertilizer (nano or chemical) increased unsaturated fatty acids content in compared to the control treatment. While non-application of fertilizer had the highest saturated fatty acids content. Finally, the co-application of potassium fertilizer (nano or chemical forms) with nitrogen fertilizer (nitroxin + 50% urea) could alleviate the adverse effects of water stress on the studied traits.  相似文献   

3.
We present data of a 2 years field experiment on influence of intercropping and N source on yield and yield components of fenugreek (Trigonella foenum-graecum)–buckwheat (Fagopyrum esculentum) intercrops. The experiment was conducted at the research farm, College of Agriculture, Shahrekord, Iran during 2014 and 2015. Treatments included sole cropping of fenugreek (F), sole cropping of buckwheat (B), and three intercropping ratios. Second factor was N fertilizer type: mineral chemical fertilizer (CF) or broiler litter (BL). Intercropping improved yield of fenugreek and buckwheat compared with sole cropping and BL was the more effective fertilizer especially in intercrops. Fenugreek and buckwheat in intercrops used available environmental resources for increasing pods plant?1, seeds pod?1, 1000-seed weight, and harvest index (HI) (for fenugreek) and clusters plant?1 and 1000-seed weight (for buckwheat) compared to the respective sole crops in both years. The resulting land equivalent ratios (LERs) of intercrops varied from 0.99 to 1.72 and the highest LER was observed in F:B = 2:1 treated with BL. This study shows a potential yield benefit of fenugreek–buckwheat intercropping under semiarid growing conditions when planting fenugreek and buckwheat at a ratio of 2:1, respectively, and applying BL compared with sole cropping with inorganic fertilizer application.  相似文献   

4.
A field experiment has been conducted to determine the effects of different irrigation water and AMF (Arbuscular Mycorrhizal Fungi) biofertilizer, photosynthesis activator and traditional fertilizer dry bean (Phaseolus vulgaris L.) on yield and growth parameters in Nevsehir Province of Turkey in 2015. The experiment has been carried out using three replications in a split plot design with three different irrigation types as main plots and AMF biofertilizer (ERS), photosynthesis activator (Multigreen-Mg), traditional fertilization (TF-Control), ERS + Mg, ERS + TF and TF + Mg applied as subplots. The number of pods per plant, the length of pods, the number of grains per pod, the weight of grains per plant, the yield of grains, 1000 seed weight, the number of grains per plant, protein yield, arbuscular mycorrhizal fungi rate have been evaluated as yield and growth criteria in the study. In the experiment, as well as the treatment x irrigation interaction, the plant height, pod number per plant, pod lenght, grain number per pod, grain weight per plant, grain yield, 1000 seed weight, grain number per plant, protein rate/grain, protein yield, root weight and AMF colonization parameters, were the other studied properties that were found to be significant. The results obtained were 877.6 mm for I100 irrigation treatment, 512.2 mm for I50 irrigation treatment and 40.19 mm water for I30 irrigation treatment. Regarding the growth parameters of dry bean, the highest PH was in ERS + Mg (67.66 cm), the lowest PH was in ERS (54.33 cm); In I50, the highest Plant Height (PH) was in ERS + Mg (65.66 cm), the lowest PH was in TF-Control (53.00 cm); and in I30, the highest PH was in TF-Control (50.66 cm), and the lowest PH was again in ERS + Mg (44.33 cm). For protein yield (PY) value, ERS + Mg, ERS + TF, TF + Mg have been placed in the same group, in I100 and I50 irrigation treatment. The highest value was ERS + TF (34.90 kg da?1) in I100, The lowest value was TF-control (19.90 kg da?1) in I30 irrigation treatment. In terms of mycorrhiza colonization ratio, ERS has been ranked first in all irrigation treatments, while the highest mycorrhiza colonization has been observed in I30 irrigation treatment (26.30%). ERS was followed by ERS + Mg (23.33%). As expected, the lowest mycorrhiza colonization ratio in all irrigation treatments have been observed in TF-control treatment, while the highest mycorrhiza colonization ratio has been respectively observed in I30 and I50 irrigation topics. The highest root weight (RW) in I100 irrigation treatment was observed in ERS (15.06 g plant?1) and it was observed in ERS (19.05 g plant?1; 26.30 g plant?1) in I50 and I30 irrigation treatments. The lowest RW in all irrigation treatments has been observed in TF + Mg (4.43 g plant?1, 6.40 g plant?1, 10.26 g plant?1), respectively.  相似文献   

5.
配施木霉微生物肥对连作黄瓜的影响   总被引:3,自引:0,他引:3  
顾小龙  陈巍  蔡枫  庞冠  李瑞霞 《土壤学报》2016,53(5):1296-1305
研究减量化肥与哈茨木霉SQR-T037微生物肥配施对盆栽黄瓜产量、品质及土壤有效养分和可培养微生物数量的影响。试验以当地农民惯用化肥施用量的100%作为对照处理(CF),75%的农民惯用化肥量配施普通有机肥(OF)或木霉SQR-T037微生物肥(BF)作处理进行连续盆栽试验。结果表明,75%的农民惯用化肥量配施木霉微生物肥BF与100%的化肥处理CF产量相等且后期有所增产,相对配施普通有机肥处理OF则产量显著提高,同时黄瓜果实中硝酸盐含量降低45%以上,维生素C含量明显增加。此外,BF处理能有效改善土壤养分供应状况,有效磷和速效钾含量明显高于对照CF和OF处理,并显著提高黄瓜根际土壤细菌、有益菌种木霉的数量,维持放线菌数量稳定,且在施用第三季后显著减少真菌数量。因此,减少25%的化肥并配施一定量的木霉微生物肥(50g株~(-1)),不仅能保证黄瓜稳产,还能显著改善黄瓜果实品质,促进土壤中养分的高效利用,节约施肥成本,促进农业可持续发展。  相似文献   

6.
连年翻压紫云英对稻田土壤养分和微生物学特性的影响   总被引:25,自引:9,他引:16  
【目的】紫云英(Astragalus sinicus L.)是南方稻区主要的冬种绿肥作物。本研究通过紫云英-化肥配施比例不同对水稻产量、 土壤养分和微生物学特性的影响探讨化肥的合理施用量,以期最大限度地减少化肥投入。【方法】紫云英水稻长期轮作定位试验始于2009年,试验设5个处理,对照(不施紫云英和化肥,CK),全量化肥(100%F),紫云英18000 kg/hm2+全量化肥(MV+100%F),紫云英18000 kg/hm2+60%化肥(MV+60%F),单施紫云英18000 kg/hm2(MV)。每个处理3次重复,小区面积15 m2。2012年10月份于水稻收获后采集土壤样品, 测定水稻产量、 土壤养分、 微生物量碳氮、 可培养微生物数量和土壤酶活性。【结果】1)与单施化肥相比,在翻压紫云英的条件下,化肥减量40%,对水稻产量没有影响,紫云英可替代部分化肥,达到减少化肥用量,保持产量的目的。2)不同施肥制度对土壤养分含量有一定的影响。与100%F处理相比,化肥结合翻压紫云英和单施紫云英处理能够提高土壤有机质和全氮含量; 施肥模式对土壤全磷和全钾含量无显著影响。与100%F处理相比, MV+100%F处理土壤的有效氮含量显著提高; 与100%F处理相比,MV和MV+60%F处理的速效磷含量显著减少; 100%F处理的土壤速效钾含量最高。不同施肥模式对土壤pH无显著影响。3)100%F、 MV+100%F处理的细菌数量较CK分别增加了102.3% 、 138.8%,而MV+60%F和MV处理与CK无显著差异,说明细菌对土壤养分有很强的依赖性。单施化肥或单施紫云英都不利于真菌和放线菌的生长,而化肥与翻压紫云英配合能显著提高其数量。4)相关性分析可以看出,细菌数量与土壤有效氮、 速效钾、 速效磷含量呈显著或极显著正相关; 真菌和放线菌的数量与铵态氮含量呈显著或极显著正相关,说明氮、磷、钾养分对土壤细菌数量的影响较大,而真菌和放线菌的数量主要受NH+4-N的影响。5) 与100%F处理相比,化肥配施紫云英可以显著提高微生物生物碳量(SMBC)和微生物生物氮量(SMBN)的含量。6) 除了过氧化氢酶,转化酶、 脲酶和酸性磷酸酶总体表现为紫云英与化肥混施大于单施化肥或紫云英。7)土壤酶活性、微生物生物量与土壤氮素的相关性最强。土壤转化酶、脲酶和酸性磷酸酶与水稻产量呈显著或极显著正相关,说明转化酶、脲酶和酸性磷酸酶活性的大小可作为衡量水稻产量多少的依据之一。【结论】MV+60%F处理在保证水稻产量的同时能够减少40%的化肥用量,是一种高效节能的培肥模式。单施化肥不利于土壤有机质、 全氮和有效氮的积累,同时不利于微生物的生长和酶活的提高。MV+60%F 培肥模式有利于改良土壤的生物学性状,值得推广并有待今后进一步观察验证。  相似文献   

7.
Productivity and sustainability of rice-rice cropping system depend upon the soil quality which is primarily governed by application of fertilizers and manures. However, such information is limited and hence, the present investigation was carried out in a 9-year-old long-term fertilizer experiment at Bhubaneswar, India. There were seven treatments (control, application of 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + FYM, 100% NPK + Zn + B, and 100% NPK + Zn + S) laid out in randomized block design with four replications. Indicators of soil quality (physical, chemical, and biological) were diagnosed from 30 numbers of soil properties measured on the post-wet season soil and soil quality was assessed taking productivity and sustainability of dry season rice as goal functions. Results revealed that the highest productivity and sustainability of dry season rice was found with application of 100% NPK + FYM. This treatment, in general, showed better physical, chemical, and biological properties than rest of the treatments. The highest soil quality index (SQI) was recorded in 100% NPK + FYM (0.941) treatment followed by 150% NPK (0.826) with CEC diagnosed as the only key indicator for rice productivity. For yield sustainability in dry season, reserve K and total N were important contributing 89% and 11%, respectively to the SQI. Therefore, these soil properties could be used to monitor soil quality in wet season. Application of FYM along with 100% NPK could sustain the productivity of dry season rice by improving soil properties under subtropical rice-rice system.  相似文献   

8.
In the present study, the effectiveness of biofertilizer containing plant growth promoting rhizobacteria was evaluated on growth and physiology of cotton under saline conditions. Cotton plants were exposed to different levels of NPK (50%, 75%, and 100% of recommended levels) along with coating with biofertilizer under saline (15 dS m?1) and non-saline conditions. It was observed that the biofertilizer seed coating improved growth, physiological (relative water content and chlorophyll content index), and ionic (K+/Na+) characteristics under saline and non-saline conditions. However, shoot growth (shoot fresh and dry weight) and leaf gas exchange characteristics (CO2 assimilation rate, A; intercellular CO2 concentration, Ci; transpiration rate, E; stomatal conductance, gs) were decreased by biofertilizer coating under saline condition. Increasing levels of NPK fertilizer increased shoot growth, whereas root growth was maximum at 75% NPK level under saline conditions. The results of the study indicate that the biofertilizer application was very effective for cotton plant in non-saline conditions but not very effective in saline conditions.  相似文献   

9.
水葫芦发酵沼液对紫叶莴苣生长和品质的影响   总被引:3,自引:0,他引:3  
利用田间小区试验研究了等氮量下不同比例水葫芦发酵沼液对紫叶莴苣生长、产量、氮磷钾养分吸收量及茎部品质的影响。结果表明,沼液替代化肥氮比例为50%、75%和100%处理莴苣产量分别比100%化肥氮处理增加9.1%、16.1%和10.3%。但基肥中化肥的比例上升能促进莴苣苗期的生长和提高氮的吸收,而沼液作为追肥较单施化肥更能促进莴苣的生长和养分的吸收。同时沼液氮施用比例增加,莴苣商品化率提高。和100%化肥处理相比,沼液施用比例为50%、75%和100%处理硝酸盐含量分别降低了13.6%、14.3%和11.3%。沼液氮施用比例为50%~100%处理中,100%沼液氮施用处理其可溶性糖、Vc含量和游离氨基酸含量都最低,而75%沼液氮施用比例下可获得最高的氨基酸、可溶性糖和Vc含量。研究认为,沼液基施效果比单施尿素等化学肥料效果稍差,但追施沼液比化肥更加促进了莴苣的生长和养分吸收,并缩短莴苣的生长期,提高其商品率。综合莴苣生长趋势、生物量及商品化率和品质来看,沼液替代75%化肥氮比例是最佳施用比例。  相似文献   

10.
逆境补偿效应在作物中普遍存在,对作物生长发育与产量产生重要的影响。为阐明土壤盐度降低后甜高粱的补偿生长效应,本研究采用盆栽方法,将甜高粱拔节期的土壤含盐量设置3个梯度:5 g×kg~(-1)(高盐处理)、由5 g×kg~(-1)降低到2 g×kg~(-1)(盐度降低处理)、2 g×kg~(-1)(低盐对照),测定2个甜高粱品种地上部器官(茎秆、叶片、叶鞘)干物质生长速率与积累,以及盐离子(Na~+、Cl~-、K~+)在不同器官的含量。结果表明:高盐处理甜高粱地上部干物质增长速率一直显著低于对照;土壤盐度降低后,各器官干物质生长速率明显升高,并超过对照,产生了超补偿效应。成熟期高盐处理株高与地上部干物质大幅下降;土壤盐度降低后‘辽甜1号’的株高与地上部干物质较低盐对照分别下降7.69%和33.21%,而‘中科甜3号’的株高和地上部干物质重与对照没有差异。高盐处理后各器官干物质中Na+和Cl-含量较对照大幅度提高,K+含量增加幅度较小。土壤盐分降低后的35 d,甜高粱Na+和Cl-在各器官中含量虽仍高于对照,但比高盐处理已大幅下降;茎秆与叶鞘K+的含量较对照有小幅提高,而叶片K+含量与对照无显著差异。本研究表明:甜高粱盐胁迫降低后离子毒害减轻、生长速率加快直至超过对照,耐盐甜高粱品种补偿效应尤为明显,成熟期干物质产量可与对照相当。本研究结果可为盐碱地甜高粱栽培提供理论依据。  相似文献   

11.
Field experiments were conducted at the fields of Crop Research and Seed Multiplication Farm of Burdwan University, Burdwan, West Bengal, India during the winter seasons of 2005–2006, 2006–2007, and 2007–2008 in old alluvial soil (pH-6-7) to evaluate the influence of integrated nutrient management on soil physicochemical and biological properties under mustard (Brassica campestris cv. ‘B9’) cropping system. In the first year (2005–2006), seven varieties of mustard were cultivated under recommended dose of chemical fertilizer (100:50:50). In the second year of the experiment (2006–2007), six different doses of biofertilizer and chemical fertilizer were applied. In the third year (2007–2008), six different level of compost along with a combined dose of biofertilizer and chemical fertilizer (T3-3/4 Chemical fertilizer: 1/4 biofertilizer) were applied. The results indicated significant improvement in the soil quality by increasing soil porosity and water holding capacity significantly, as well as gradual build-up of soil macronutrient status after harvesting of the crop. Applications of biofertilizers have contributed significantly toward higher soil organic matter, nitrogen (N), available phosphorus (P), and potassium (K). The use of biofertilizers and compost have mediated higher availability of iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), and boron (B) in soil. The use of biofertilizers and compost significantly improved soil bacterial and fungal population count in the soil, thereby increasing the soil health.  相似文献   

12.
为了探究秸秆等氮量替代化肥的可行性及其对土壤水分和玉米干物质积累的影响,进行连续6年的大田试验,2020年是施肥第5年,2021年是施肥第6年,保持225 kg/hm2的等氮量,设置5个施肥处理:CK(单施化肥,100%化肥氮)、S25(25%秸秆氮+75%化肥氮)、S50(50%秸秆氮+50%化肥氮)、S75(75%秸秆氮+25%化肥氮)、S100(100%秸秆氮),研究秸秆等氮量替代化肥对土壤贮水量、水分利用效率、土壤耗水量、土壤养分和玉米干物质积累量的影响。结果表明:(1)2020年试验中,在播种前和灌浆期,0—80 cm土层土壤贮水量为S50>S25>CK>S100>S75;在大喇叭口期和抽雄期为S50>S25>CK>S75>S100;在成熟期为S50>CK>S25>S100>S75;在2021年试验中,大喇叭口期,0—80 cm土层土壤贮水量为S25>S50>S100>CK>S75;在抽雄期,0—80 cm土层土壤贮水量为S25>S50>CK>S100>S75;(2)2020年和2021年试验中,在玉米生长的整个生育时期中,各处理组的0—200 cm各土层土壤贮水量随土层深度的变化趋势一致,并且S25和S50处理大于CK,而S75和S100处理小于CK;(3)2020年和2021年试验中,与CK相比各秸秆替代处理组的土壤耗水量和水分利用效率无显著差异,但2021年试验中S50的土壤耗水量显著大于S100,提高了5.00%;(4)2020年试验中,各秸秆替代处理组的土壤有机质和碱解氮含量较CK均无显著差异,S100处理土壤速效磷含量较CK显著降低50.75%;2021年试验中,与CK相比,S25、S50、S75、S100的土壤有机质含量分别显著增加27.40%,38.13%,36.30%,22.60%,S50的土壤碱解氮含量较CK增加27.74%,S25、S50、S75、S100处理土壤速效磷含量较CK分别显著降低31.48%,22.22%,30.56%,45.68%。(5)2020年试验中,在玉米各个生育时期中,秸秆替代化肥处理的玉米单株干物质积累量与CK相比均无显著差异,但2021年试验中,在玉米抽雄期、灌浆期和成熟期这3个生育时期,S50处理的玉米单株干物质积累量最多,与CK相比分别增加22.49%,34.06%,12.58%;在玉米灌浆期和成熟期这2个生育时期,S75处理的玉米单株干物质积累量,与CK相比分别增加22.39%,12.11%。大体上,玉米单株干物质积累量随秸秆替代化肥比例的增加先增加后减少。从保障土壤水分、养分和干物质积累量的角度考虑,S50是试验条件下最有潜力的秸秆等氮量替代化肥方式。  相似文献   

13.
Effects of organic, biological, and chemical fertilizers along with water-deficit regimes were investigated on forage barley in a field experiment during 2007–2008. Irrigation regimes were nonstressed (NS), moderately stressed (MS), and severely stressed (SS) and fertilizer treatments were no fertilizer (NF), phosphorus and nitrogen biofertilizers (BF), chemical fertilizer (CF), vermicompost (VC), chemical fertilizer + vermicompost (CV), and chemical fertilizer + biofertilizer (CB). Water stress reduced leaf/stem ratio and dry-matter digestibility (DMD), but increased crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF). However, the effect of water deficit on DMD, ash, and NDF depended on the fertilizer treatment. In BF and CV, the barley forage had the greatest DMD and least ash and NDF under water-deficit conditions. The integrated fertilizing systems are more reliable than conventional systems to produce high-quality forage barley in arid environments with late water stress or water deficit irrigation system.  相似文献   

14.
Ecological benefits associated with plant growth‐promoting rhizobacteria (PGPR) inoculants offer a promising integrated nutrient management option to counteract plant nitrogen (N) deficiency. We performed field experiments to evaluate the effect of integrated N fertilizer regime involving chemical N fertilizer (CNF) and N‐enriched compost (NEC), either alone or combined with selected PGPR (Pseudomonas aeruginosa ) on sunflower seed quality, N use efficiency (NUE) and soil fertility during 2014–2015. We found that integrated N biofertilizer application resulted in significantly higher seed oil concentration, fatty acid composition, and harvest index in both cropping years. Greater effects on N yield efficiency (NYE), N use efficiency (NUE), N physiological efficiency (NPE), and photosynthetic N use efficiency (PNUE) were recorded in nitrogen‐enriched compost+PGPR inoculant (NECPI) treatment followed by chemical N fertilizer+PGPR inoculant (CNFPI) treatment. Statistically significant differences were observed in linoleic and linolenic acid, NYE, and NUE for treatment × year interaction, thus, suggesting that the integrated N biofertilizer approach facilitates the efficient N use by sunflower for improving yield and seed quality. Moreover, we also found considerable enhancement of soil N fertility after two consecutive cropping years of sunflower. The enhancement of seed quality, N use efficiencies, and soil N fertility through integrated N biofertilizer application emphasizes the importance of balanced crop N nutrition, ensuring sufficient N supply to sunflower with adequate N balance in soil for the next crop. Overall, combination of PGPR with NEC amendment may optimize N uptake efficiency and reduce N fertilizer losses, which is necessarily required for the sustainable sunflower production.  相似文献   

15.
在等氮量替代条件下,以武运粳29号为供试材料,设置不施氮肥(M0)作为空白对照,单施化肥(M1),以及25%有机肥(M2)、50%有机肥(M3)、75%有机肥(M4)、100%有机肥(M5)替代化肥6个处理,研究有机-无机肥不同配施比例对水稻氮素吸收利用率的影响。结果表明:(1)在水稻生育前期,化肥施用比例高的处理土壤速效氮含量高;到水稻生育后期,有机肥替代比例高的处理土壤速效氮含量高。(2)50%有机肥替代化肥水稻产量最高。(3)50%有机肥替代化肥能够显著提高水稻的氮素累积量。(4)100%有机肥替代化肥处理水稻氮素籽粒生产效率最低,单施化肥处理水稻氮素籽粒生产效率最高。(5)50%有机肥替代化肥,在保证水稻高产的同时,显著增加水稻氮素累积量,并使水稻氮肥农学利用率、氮肥吸收利用率、氮肥偏生产力均得到明显提高。说明提高水稻氮素吸收利用效率,在等氮量替代条件下,50%有机肥替代化肥是一种相对适宜的比例。  相似文献   

16.
Increasing soil phosphorus and organic matter content for crop production while reducing the cost of production are required to facilitate the achievement of green revolution in Africa. Field and pot experiments were laid out during 2012 and 2013 to assess the effects of combined application of Kodjari phosphate rock (PR) and water soluble phosphorus on sorghum yields, P uptake and Lixisol characteristics in the centre west of Burkina Faso. Five P fertilizers treatments (zero P, 100% TSP (triple super phosphate), 100% PR, 50% PR + 50% TSP, 75% PR + 25% TSP) and two cow manure treatments (zero, 5 t ha?1) were tested. In field experiment, 50% PR + 50% TSP was as effective as 100% TSP in increasing sorghum yield above the control by 30% in 2012 and 50% in 2013 and P uptake by 30% in both years. Manure had an additive effect on phosphorus fertilizers in increasing sorghum yields and P uptake. In pot experiment, increases of Ca uptake, soil pH and microbial P were observed with the application of 50% PR + 50% TSP. Our results suggest that formulation of fertilizer combining phosphate rock and mineral P would improve sorghum yields and income of smallholders.  相似文献   

17.
  目的  土壤微生物量碳氮(MBC、MBN)和水溶性有机碳氮(WSOC、WSON)是土壤中活跃的碳氮组分,是衡量土壤碳氮周转与养分有效性的重要指标。探究不同比例蚓粪替代化肥条件下,设施土壤微生物量碳氮、水溶性有机碳氮含量变化特征,旨在为设施土壤合理施肥提升提供科学依据。  方法  依托温室内有机肥替代部分化肥长期定位试验,以黄瓜为供试材料,试验共设6个处理,分别为100%化肥(CF100)、75%化肥(CF75)、25%蚓粪替代化肥(VM25)、50%蚓粪替代化肥(VM50)、100%蚓粪替代化肥(VM100)、不施肥(CK)。  结果  0 ~ 10 cm土层土壤活性碳氮含量略高于10 ~ 20 cm土层,其在生育期内呈先增高后降低的变化趋势。其中VM50处理提升效果最显著,较CF100处理分别提高了66.46%(0 ~ 10 cm土层)、76.02%(10 ~ 20 cm土层);在黄瓜盛果期各处理土壤WSOC含量相对较高,VM50处理土壤WSOC含量较CF100处理分别提高22.88%(0 ~ 10 cm土层)、18.84%(10 ~ 20 cm土层);0 ~ 10 cm土层,与CF100相比,生育前期VM25处理对土壤MBN含量提升效果较好,生育后期VM50处理对土壤MBN含量提升效果较好。10 ~ 20 cm土层,在黄瓜初果期各处理土壤WSON含量相对较高,VM50处理土壤WSON含量较CF100处理分别提高50.90%(0 ~ 10 cm土层)、12.55%(10 ~ 20 cm土层);3种比例蚓粪替代化肥显著提高0 ~ 10 cm土层 MBC、WSOC在总有机碳,MBN、WSON在全氮中的占比,VM25、VM50处理对反映土壤微生物群落的结构信息的土壤MBC/MBN降低效果较好,VM50处理对土壤WSOC/WSON降低效果较好。  结论  在设施栽培条件下,可以通过蚓粪适量施入的措施合理替代化肥,达到给作物持续供应养分的目的,为设施栽培中科学合理施肥提供科学依据。  相似文献   

18.
为探讨品种与氮肥形态对花生叶片活性铁含量和SPAD值及荚果产量的影响,选择远杂9102和驻花1号两个品种为主处理,以全部施用铵态氮肥、铵态氮肥与硝态氮肥各半、全部硝态氮肥为副处理的裂区设计进行田间试验。结果表明,远杂9102和驻花1号均以铵态氮肥与硝态氮肥各半处理的产量最高,但远杂9102的产量显著高于驻花1号,提高8.2%。在花针期、结荚期随着铵态氮肥比例的增加,远杂9102叶片活性铁含量均呈降低趋势,而驻花1号叶片活性铁含量在花针期和结荚期均呈增加趋势;新叶SPAD值均呈增加趋势。综合分析,以远杂9102品种和铵态氮肥与硝态氮肥各半组合的花生产量最高。  相似文献   

19.
豆科绿肥替代化学氮肥促进柑橘幼苗生长和氮素吸收   总被引:3,自引:0,他引:3  
  【目的】  果园豆科绿肥还田是实现有机肥替代化肥的重要途径。研究不同绿肥替代化学氮肥比例对柑橘幼苗生长、氮素吸收、根系形态及土壤微生物量的影响,以期为柑橘减施氮肥和实现绿色有机生产提供理论依据。  【方法】  以1年生柑橘(Citrus reticulate L.)幼苗为材料进行盆栽试验,供试绿肥为拉巴豆(Dolichos lablab L.)和印度豇豆(Vigna sinensis Hayata)。在相同氮磷钾养分施用量下,设置5个绿肥氮替代比例:0 (100%F)、25% (25%G+75%F)、50% (50%G+50%F)、75% (75%G+25%F)和100% (100%G),磷钾量不足时由化肥补齐。在柑橘抽春梢期测定其各部位干物质量和氮素累积量,分析柑橘根系形态和根系活力,并测定土壤微生物量碳氮含量。  【结果】  相比100%F处理,两种豆科绿肥替代化学氮肥均显著提高了柑橘干物质量和氮素累积量,以75%G+25%F和100%G处理的效果最好,其干物质量和氮素吸收量分别提高42.71%~82.95%和38.88%~53.31%;土壤微生物量碳含量提高了5.12%~48.42%,土壤微生物量氮含量提高了6.35%~133.67%,并且微生物量碳氮含量随着绿肥替代化学氮肥比例的增加而增加。绿肥替代化学氮肥处理明显提高了柑橘幼苗总根长和根表面积,其中以< 1.5 mm径级根提高最多。相比100%F处理,绿肥替代化学氮肥处理的柑橘幼苗总根长和根表面积分别提高88.34%~324.87%和78.82%~372.91%;柑橘根径级<1.5 mm 根长和根表面积随着拉巴豆替代化学氮肥比例增加而增加,而印度豇豆处理则以替代50%和100%化学氮肥处理最高。同时,相比单施化肥处理,拉巴豆和印度豇豆替代化学氮肥处理柑橘根系活力分别提高43.95%~47.48%和40.61%~66.14%。相关性和结构方程分析表明,两种豆科绿肥替代化学氮肥可直接影响柑橘干物质量,也可通过改善柑橘根系形态和活力,增加土壤微生物量碳氮含量,直接或间接地影响柑橘氮累积量和干物质量;绿肥C/N值和柑橘氮素累积量存在显著正相关性,其通过直接影响柑橘氮素累积量,或间接改变柑橘根系形态、根系活力和微生物量,进而直接或间接影响柑橘干物质量。  【结论】  在等氮磷钾养分条件下,拉巴豆和印度豇豆替代化学氮肥均明显促进了土壤微生物增殖,提高柑橘根系活力、根系长度和根表面积,促进柑橘氮素吸收和干物质积累。在不改变柑橘常规氮磷钾施用量的前提下,豆科绿肥替代75%~100%的化学氮肥为较适宜的替代比例,其能够促进柑橘幼苗氮素吸收和干物质积累。  相似文献   

20.
The use of organic fertilizers to improve the agronomic parameters of soy (Glycine max (L.) Merrill) has been considered a key production practice. During the period from December 2015 to May 2016, the productive behavior of Var-21 soya under the application of two organic biofertilizers was assessed in southern Haiti. Four random repetitions were carried out with biofertilizer A (cow dung + leguminous waste + ash + rice chaff) and biofertilizer B (cow dung + molasses + quick lime). The variables analyzed were days to flowering, plant height, number of beans per pod, weight of 1,000 beans, and yield per hectare, with statistical evaluation by analysis of variance and Tukey’s test. The best yield was obtained with biofertilizer A in treatment T2 (150 L/ha) (4,129.99 kg/ha). This study enabled us to identify the most efficient foliar fertilizer to improve the production parameters of Var-21 soya. The information obtained will serve as a basis for future research, especially into the effectiveness of organic fertilizers on other crop species, and under other agro-environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号