首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以砂糖橘为对象,建立基于可见-近红外光谱的砂糖橘总酸含量的无损检测方法.试验采集170个完整砂糖橘的500~2500nm漫反射光谱,然后采用滴定法测定总酸含量.采用Sym8小波变换对光谱进行去噪预处理,并采用连续投影算法(successive projections algorithm,SPA)结合间隔偏最小二乘法(interval partialleast squares,iPLS)优选波长,最终建立BPNN和偏最小二乘法(partial least squares method,PLS)总酸预测模型.结果表明:砂糖橘光谱的小波去噪方法产生的信噪比均值SNR=175.2911,去噪信号与原始信号间的均方根误差均值RMSE=0.00013,性能优于常规去噪方法.SPA与iPLS相结合构成的反向偏最小二乘法(back-ward interval partial least squares,BiPLS)_SPA波长选择法能将光谱变量从2001个压缩到14个,能简化模型并提高建模精度和稳定性.BPNN模型具有更好的非线性映射能力,基于这14个变量的BPNN总酸预测模型的预测相关系数Rp=0.867,预测均方根误差RMSEP=0.0616,性能优于线性的PLS模型.  相似文献   

2.
基于小波变换的原理,分别利用阈值滤波、小波包、小波收缩3种常用的去噪方法,对砂糖橘样品的可见/近红外光谱信号进行去噪处理,探讨每种去噪方法的最优参数组合(小波函数、分解尺度、阈值)的同时选择最适去噪方法,并通过偏最小二乘法(PLS)对去噪后的重构光谱和砂糖橘果形指数建模。结果表明,小波包去噪有利于消除导数光谱中的噪声,提高建模精度,其最优参数组合为默认阈值条件下,小波函数Bior1.3、2尺度分解,去噪后的砂糖橘果形指数光谱建立的PLS模型的预测集R为0.9632,RMSEP为0.0779。  相似文献   

3.
基于小波滤噪和iPLS的草莓近红外光谱糖度检测模型   总被引:2,自引:0,他引:2  
[目的]获得精度高、鲁棒性强的草莓近红外光谱糖度检测模型。[方法]利用K-S(Kennard-Stone)方法划分样本集,并用小波滤噪法对草莓1000~2500nm近红外光谱进行预处理,最后用偏最小二乘法(PLS)和区间偏最小二乘法(iPLS)分别建立预测模型。[结果]采用区间偏最小二乘法将光谱划分为20个子区间,利用其中的第16个子区间建立的糖度模型效果最佳,其校正时的相关系数Rc和校正均方根误差RMSEC分别为0.9355和0.259,预测时的相关系数邱和预测均方根误差RMSEP分别为0.9202和0.305。[结论]用小波滤噪和联合区间偏最小二乘法所建立的草莓糖度模型不仅能有效地减少建模所用的变量数,缩短运算时间,而且预测能力和精度均得到提高。  相似文献   

4.
以柞木为研究对象,以900~1700 nm的近红外光谱仪获取木材表面近红外光谱数据,对89个柞木样本进行检测,其中58个组成校正集,31个为预测集。首先,采集样本径切面光谱数据,并利用SG平滑对光谱数据进行预处理;然后,利用反向区间偏最小二乘( BiPLS)选出均方根误差最小的波长区间组合;再利用连续投影算法( SPA)进一步选择出波长特征;最后,以优选出的波长特征作为输入,建立偏最小二乘法回归模型,确定出木材基本密度与近红外光谱之间的联系。 BiPLS算法将光谱划分区间划分为10时,均方根误差最小,其最佳区间组合为[35679],变量个数由全光谱117个降至59个;应用SPA算法二次降维,变量个数降至6个,降低变量信息的冗余,减少了变量个数,提高了建模的速度和效率。 BiPLS-SPA模型较PLS、iPLS、BiPLS、SPA-PLS具有更高的相关系数,更小的均方根误差,柞木基本密度预测相关系数为0.925,预测均方根误差为0.0104,相对分析误差为2.83。  相似文献   

5.
采集不同氮素处理水平下的油菜植株不同叶位和叶片部位的高光谱数据、SPAD值和叶绿素含量实测值,在筛选原始高光谱数据预处理方法的基础上,比较基于偏最小二乘(partial least squares,PLS)模型和最小二乘-支持向量机(least squares support vector machine,LS-SVM)的SPAD预测模型。结果表明,基于标准正态变量校正(standard normal variate,SNV)预处理方法的LS-SVM模型(SNV-LS-SVM)为最佳高光谱-SPAD预测模型,可准确预测油菜叶片SPAD值空间分布和可视化结果。基于SPAD空间分布结果提取不同叶位和叶片部位的SPAD值,将其与对应植株和叶片位置的实测叶绿素含量进行相关性分析,结果显示,油菜SPAD值最佳测量叶位为顶四叶的顶部。  相似文献   

6.
近红外光谱预处理是胡杨叶片含水量光谱检测的前提,然而样本背景、电噪声和杂散射等会干扰近红外光谱的测量结果。为了避免以上因素对近红外光谱产生的影响,采用连续投影算法(successive ections algorithm,简称SPA)、数据中心化、归一化和标准正态变量变换方法(standard normal variate transformation,简称SNV)对原始光谱数据进行预处理,使用偏最小二乘法(partial least squares,简称PLS)建立胡杨叶片水分含量检测的校正集和预测集模型。结果表明,直接使用原始光谱,利用SPA算法筛选变量数为7个,模型预测精度为0. 971 44,RMSPCV为0. 046 132,相关系数r=0. 674 24,RMSEP=0. 021 434;使用原始光谱+标准正态变量变换方法,利用SPA算法筛选变量数为6个,模型预测精度为0. 976 63,RMSPCV为0. 045 642,相关系数r=0. 774 72,RMSEP=0. 018 24。SNV+SPA预处理方法能够有效地消除噪声和散射,提高模型的预测精度,相关性明显增加,降低数据维数和误差,可用于胡杨叶片水分含量的快速、无损检测,同时对其他作物叶片水分含量光谱预处理检测具有一定的参考意义。  相似文献   

7.
利用可见/近红外光谱透射技术检测温州蜜柑含水率。采用微分处理(differential processing,SD)、多元散射校正(multivariate scattering correction,MSC)、标准正态变换(standard normal variate,SNV)、SG卷积平滑以及标准化等预处理方法比较建立的偏最小二乘回归模型(partial least squares regression,PLS)的拟合准确度,并确定最佳预处理方法,同时采用竞争性自适应重加权采样算法(competitive adaptive reweighted sampling algorithm,CARS)提取特征波长,以此建立基于柑橘含水率的PLS模型、BP神经网络模型和最小二乘支持向量机模型(least squares support vector machine,LSSVM)。结果显示,使用经过SNV预处理后的光谱进行CARS筛选得到的359个波长建立的LSSVM模型预测效果最佳,校正集的相关系数和均方根误差分别为0.937 5和0.008 6,验证集相关系数和均方根误差分别为0.831 6和0.012 0,表明可见/近红外光谱技术用于温州蜜柑的含水率检测是可行的。  相似文献   

8.
先用离散小波变换(DWT)对近红外光谱数据(NIR)压缩去噪及扣除光谱背景,再用支持向量回归(SVR)算法建立近红外光谱校正模型,建立了离散小波变换—支持向量回归(DWT-SVR)测定谷物样品中油类、蛋白质和淀粉的新方法。与偏最小二乘法(PLS)相比较,本研究所建模型具有更好的预测准确度。  相似文献   

9.
为了研究量子进化算法(quantum-inspired evolutionary algorithm,QEA)在苹果浸透射近红外光谱分析中的应用,先用反向间隔偏最小二乘法(backward interval partial least squares,BiPLS)对光谱信息区间初步定位,再采用QEA算法选择波长点,建立糖度预测模型;同时采用遗传算法(genetic algorithm,GA)选取波长点建立预测模型,并对2种算法的结果进行比较.结果表明:运行GA算法建立的GA-PLS模型变量数为110,校正均方根误差(root mean standard error of calibration,RMSEC)为0.582 0,预测均方根误差(root mean standard error of prediction,RMSEP)为0.612 3;运行QEA算法建立的QEA-PLS模型变量数为194,RMSEC为0.492 7,RMSEP为0.526 0,说明量子进化算法用于苹果漫透射近红外光谱分析可有效提高模型预测精度,相比遗传算法表现出更好的寻优能力.  相似文献   

10.
以柞木为研究对象,以900~1 700 nm的近红外光谱仪获取木材表面近红外光谱数据,对89个柞木样本进行检测,其中58个组成校正集,31个为预测集。首先,采集样本径切面光谱数据,并利用SG平滑对光谱数据进行预处理;然后,利用反向区间偏最小二乘(Bi PLS)选出均方根误差最小的波长区间组合;再利用连续投影算法(SPA)进一步选择出波长特征;最后,以优选出的波长特征作为输入,建立偏最小二乘法回归模型,确定出木材基本密度与近红外光谱之间的联系。Bi PLS算法将光谱划分区间划分为10时,均方根误差最小,其最佳区间组合为[3 5 6 7 9],变量个数由全光谱117个降至59个;应用SPA算法二次降维,变量个数降至6个,降低变量信息的冗余,减少了变量个数,提高了建模的速度和效率。Bi PLS-SPA模型较PLS、i PLS、Bi PLS、SPA-PLS具有更高的相关系数,更小的均方根误差,柞木基本密度预测相关系数为0.925,预测均方根误差为0.010 4,相对分析误差为2.83。  相似文献   

11.
为准确预测苹果糖度,基于傅里叶变换近红外光谱、偏最小二乘法和深度学习技术,建立了不同的苹果糖度预测模型.使用傅里叶变换近红外光谱仪和折光仪采集160个苹果的光谱与糖度信息,建立不同光谱预处理方法的偏最小二乘法(Partial least square,PLS)模型,通过常用的竞争性自适应重加权算法减少PLS模型计算量,对比得到最好的PLS模型预测精度;使用深度学习的MobileNetV2网络构建苹果糖度预测模型,调整最适合的模型构建参数.试验结果表明:经过标准正态变量变换(Standard normal variate,SNV)光谱预处理的PLS模型预测精度最高,其预测模型相关系数(Rp)为0.9333、均方根误差(RMSEP)为0.4765°Brix,特征波长筛选可减少计算量,但会使预测模型精度稍微下降;经过数据增强处理的MobileNetV2模型可以获得一定的糖度预测精度,其Rp为0.8431、RMSEP为0.8984°Brix.结果 表明,基于深度学习的MobileNetV2网络结构训练得到的糖度预测模型具有一定的可行性,但SNV预处理的全波段PLS模型精度最高,PLS建模依然是小批量样本建模简单高效的方法.  相似文献   

12.
牛奶中蛋白质含量的检测关系到牛奶品质的高低及牛奶的口感状况,试验对牛奶蛋白质含量进行研究,利用高光谱成像系统获取试验数据实现对牛奶蛋白质含量的无损检测。本文通过使用基线校正、散射校正、平滑处理和尺度缩放4个方向的8种光谱预处理算法分别对光谱进行单一方法优化,以及利用0.1阶微分为步长进行0~0.9阶分数阶微分(factional order differerntial,FOD)的数学变换,并分别使用偏最小二乘法(partial least squares,PLS)、随机森林(random forest,RF)和反向传播算法(back propagation,BP)分别对上述处理后的17种预处理结果进行建模。结果表明,采用RF的0.2阶微分建立的牛奶蛋白质含量反演模型预测精度最高,测试集的决定系数R2=0.999 8,均方根误差RMSE=0.003 1,相对分析误差RPD=85.110 9。研究为进一步实现牛奶蛋白质含量精准检测提供了参考依据。  相似文献   

13.
以喷洒不同浓度毒死蜱的鲜冬枣为研究对象,研究近红外光谱技术结合偏最小二乘法(PLS)和连续投影算法(SPA)检测鲜冬枣表面农药残留的方法。运用AntarisⅡ近红外光谱仪对喷洒不同浓度的毒死蜱的鲜冬枣样品进行扫描,首先建立全波段PLS模型,然后应用SPA提取特征波长,作为PLS的输入变量,建立SPA-PLS模型,将全波段PLS模型和SPA-PLS模型进行比较。经SPA提取5个特征波长建立的模型,使用变量数仅占全波段的0.32%,但建立的冬枣表面农药残留模型的准确度和精度优于全波段所建立的模型。近红外光谱技术结合SPA和PLS建立鲜冬枣表面不同浓度毒死蜱农药残留的模型是可行的,同时SPA算法简化模型复杂度,提高模型精度及稳定性。  相似文献   

14.
为研究激光诱导击穿光谱检测水果中重金属元素的应用,将激光诱导击穿光谱技术和化学计量学相结合分析脐橙中铜元素的含量。通过偏最小二乘法(PLS)、区间偏最小二乘法(i PLS)、联合区间偏最小二乘法(siPLS)优化建模区域,建立了经过标准正态变换(SNV)校正后光谱的铜含量分析模型。实验结果表明,后两种改进的偏最小二乘法建立的预测效果模型明显优于全波长(320~340 nm)PLS模型,并且当采用si PLS将光谱划分为25个子区间划分,选择其中5、14、16、22四个子区间时建立的si PLS模型效果最佳,其校正集相关系数r和交互验证误差(RMSEC)分别为0.988 3和5.61μg/g,预测集相关系数r和预测均方根误差(RMSEP)分别为0.979 2和8.62μg/g。研究为进一步实现水果中痕量重金属元素的快速定量分析提供了方法和数据参考。  相似文献   

15.
采用透射方式获取茶汤的近红外光谱,利用特征变量筛选方法从茶汤的近红外光谱中提取氨基酸光谱信息,建立茶汤中氨基酸含量的快速检测模型.分别利用间隔偏最小二乘法(iPLS)和联合区间偏最小二乘法(siPLS)从茶汤的近红外光谱中提取微弱的氨基酸信息,建立其近红外光谱定量分析模型.结果表明,利用两种方法筛选的特征变量都避开了水的强吸收峰影响,但利用siPLS方法建立的模型性能明显好于iPLS的.最优的siPLS模型对校正集样本的相关系数为0.912,交互验证均方根误差为0.185;用预测集中独立样本检验模型性能,其相关系数为0.887,预测均方根误差为0.202.研究结果可为液体茶饮料中的成分实时快速检测提供参考.  相似文献   

16.
为探索一种检测红富士苹果毒死蜱农药残留的方法,利用4 000~10 000 cm~(-1)波段的近红外光谱仪对喷洒不同体积分数毒死蜱农药的苹果样品进行原始光谱数据采集,利用多种方法对原始光谱进行预处理,建立偏最小二乘法(partial least squares,简称PLS)模型进行预测分析。结果表明,近红外光谱对喷施不同体积分数毒死蜱的红富士苹果样品具有敏感性,而对无农药样品检测精确度较低。进一步删除空白对照组数据进行建模预测,结果表明,当采用一阶导数(first derivative,简称FD)预处理时结果最好,R=0.987 9,预测标准差(简称SEP)为0.173 6,交互验证预测均方差(简称RMSECV)为0.120 5,准确度为0.923 4,说明近红外光谱能够较好地预测毒死蜱农药残留,为阿克苏红富士苹果毒死蜱农药残留的检测探索出一种新方法。  相似文献   

17.
基于定义变量的PLS法鉴定新茶和陈茶的研究   总被引:2,自引:0,他引:2  
通过对当年新茶及其在室温条件下陈化处理1年后的陈茶进行HPLC分析,分别获得了其色谱峰,利用其峰面积数据(变量X)结合通过对新茶和陈茶分别人为定义的一个新数值(变量Y),用偏最小二乘法(partial least squares,PLS)建立了预测模型,通过量化的模型计算得到的预测值与新茶和陈茶的临界值的比较实现了新茶和陈茶的精确鉴别,对2006年生产的120个定标样和38个外部未知茶叶样品的鉴别准确率分别达到了100%和97.37%,同时对2007年生产的14个新茶样本的判别准确率也达到了92.8%。  相似文献   

18.
金涛  刘伟  刘长虹 《安徽农业科学》2021,49(2):204-205,220
基于多光谱成像技术对牛肉干中水分含量的快速无损检测方法进行研究,通过对比最小二乘回归(PLS)、最小二乘支持向量机(LS-SVM)和误差反向传播神经网络(BPNN)所建预测模型的性能,发现BPNN模型对牛肉干水分含量预测效果最佳,其确定系数(Rp2)、预测集均方根误差(RMSEP)和剩余预测偏差(RPD)分别为0.941、3.602%和4.142.结果表明,光谱吸收度是检测牛肉干水分含量的重要特征,BPNN结合多光谱建立的预测模型精度较高,鲁棒性较好,在牛肉干水分的实时无损检测中具有良好的应用前景.  相似文献   

19.
为了快速无损检测分析小麦蛋白质含量,构建近红外光谱最优小麦蛋白质定量检测分析模型。利用一阶S-G平滑算法+SNV算法对光谱进行预处理。使用连续投影算法(Successive projections algorithm, SPA)提取光谱中的特征波段点,使全谱图的141个波段点降低到17个特征波段点。在选择的17个特征波段点基础上分别建立偏最小二乘回归(Partial least regression, PLSR)模型、支持向量机(Support vector machine, SVM)模型、多元线性回归(Multiple linear squares regression, MLR)模型和主成分回归(Principal component regression, PCR)模型。在构建的4种小麦蛋白质含量预测模型中,MLR预测分析模型的验证集均方根误差(RMSEV)和校正集均方根误差(RMSEC)最小,验证集相关系数(r_v)和校正集相关系数(r_c)最大,其r_v=0.968,r_c=0.976,RMSEV=0.300,RMSEC=0.275。因此,相比于其他3种检测模型,建立的MLR小麦蛋白质含量检测模型最优,稳定性和精确性最高。  相似文献   

20.
近红外光谱法测定土壤全氮和碱解氮含量   总被引:1,自引:0,他引:1  
为探寻采用近红外光谱技术在野外快速测定土壤全氮和碱解氮含量的方法,采集土壤光谱信号,结合偏最小二乘法和主成分分析法,分别建立土壤全氮和碱解氮含量测定的定标模型。结果表明,采用PLS方法建模时,土壤全氮和碱解氮含量测定定标模型的精度较高。为提高模型的预测精度,采用多元散射校正、标准归一化、基线校正、卷积平滑和小波变换5种方法对光谱信号进行预处理,当用小波变换法对光谱信号进行去噪处理,并与PLS方法结合时,模型的预测精度最高,土壤全氮样品校正模型的相关系数为0.838 5,均方根误差为0.153 1,对应验证模型的相关系数为0.754 9,均方根误差为0.184 2,校正集和验证集土壤全氮含量预测值(y)与实测值(x)之间的关系模型分别为y=0.685 8x+0.198 0和y=0.621 4x+0.237 9;土壤碱解氮样品校正模型的相关系数为0.866 5,均方根误差为0.007 7,对应验证模型的相关系数为0.796 1,均方根误差为0.009 4,校正集和验证集土壤碱解氮含量预测值(y)与实测值(x)之间的关系模型分别为y=0.749 8x+0.019 4和y=0.700 7x+0.023 3。综合分析结果表明,应用近红外光谱技术对土壤全氮和碱解氮含量进行定量预测是可行的,且应用小波变换方法对光谱冗余信息进行预处理后,再与偏最小二乘法相结合可有效地提高模型的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号