首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了检测产志贺毒素大肠杆菌(STEC)在鸭源大肠杆菌中的分布情况,本研究建立检测STEC的多重PCR方法,针对STEC特有的毒力基因stx1、stx2、h&A和eaeA筛选了4对引物,通过对PCR反应条件的优化、特异性和灵敏度的检测,建立检测STEC的多重PCR,并应用该方法调查254株鸭源致病性E.coli和115株外表健康鸭的泄殖腔分离的E.coli中STEC的分布情况.在254株鸭源致病性E.coli中检测出6株STEC,从外表健康鸭的泄殖腔分离的115株E.coil中未检测到STEC.检出的STEC的血清型分别为O36、O60、O77、O78、O158和O7 & O92.本实验建立的检测STEC的多重PCR方法特异性好、灵敏度高;对鸭源E.coli的检测结果证实鸭致病性大肠杆菌中存在STEC菌株,分布频率较低,但其血清型具有广泛的宿主源,存在引起人类疾病的可能性.  相似文献   

2.
为了了解大肠杆菌O157分离菌株携带毒力及黏附相关基因的情况及菌株的多态性.用聚合酶链式反应扩增stx1、stx2、eaeA、ehxA、EspA和Tccp基因.选用限制性内切酶HincⅡ和EcoRⅡ对分离的O157:H7菌株eaeA基因进行酶切,选用限制性内切酶HaeⅢ、HinfⅠ、EcoRⅡ和RsaⅠ对分离的O157:H7菌株chxA基因进行酶切,最后对这两个基因进行PCR-RFLP分析.结果,所有O157:H7菌株扩增出eaeA、ehxA、EspA和Tccp基因,但没有扩增出stx1和stx2基因;4株O157:H?菌株,均没有扩增出stx2、eaeA、ehxA、EspA和Tccp基因,且只有1株扩增出stx1基因.所有分离菌株的eaeA基因和ehxA基因选用限制性内切酶酶切之后所得酶切片段数目和大小与标准菌株的eaeA基因和ehxA基因选用限制性内切酶酶切之后所得酶切片段数目和大小相同.结果表明,由于所有菌株缺失stx2基因,其致病力相对较低,且在基因水平较为保守,多态性较为单一.  相似文献   

3.
为探究牛源非O157产志贺毒素大肠埃希菌(STEC)的耐药基因与毒力基因是否发生共转移,本研究采用PCR方法对29株牛源非O157 STEC利用"Top six"血清群筛查、系统进化分群和毒力基因检测,结果显示31.03%(9/29)STEC为O145血清群;系统进化分群以A群为主(68.97%);75.86%(22/29)STEC的毒力基因谱为stx1a+stx2a+ehxA。采用K-B法测定STEC的抗生素敏感性,通过PCR及测序检测耐药基因bla TEM、bla CTX、bla SHV、tetA、tetE、tetG、sulI、cmlAI、aadAI和aac(3)-IV,利用多重PCR方法对耐药菌进行质粒分型、接合试验确认耐药基因和毒力基因是否发生水平转移。结果显示,29株STEC对四环素、复方新诺明、氯霉素、链霉素、氨苄西林、头孢噻肟、头孢他啶和氨曲南的耐药率在13.79%~27.59%,对庆大霉素、哌拉西林、阿莫西林/克拉维酸、氨苄西林-舒巴坦和阿米卡星的耐药率在6.90%~10.34%。共检测出8株耐药菌(27.59%),且均呈多重耐药表型,对4~13种抗生素耐药。8株耐药菌均携带四环素耐药基因tetA(未检测出其他耐药基因)和质粒incA/C并可转移至受体菌E. coli J53,其中6株可将毒力基因stx1a、stx2a和ehxA共转移至E. coli J53。以上结果表明牛源非O157 STEC存在较严重的耐药情况。本研究首次揭示耐药基因和毒力基因在非O157 STEC中发生共转移,为进一步研究二者共转移机制奠定基础。  相似文献   

4.
某定点肉牛屠宰场中非O157致病性STEC的分离鉴定   总被引:1,自引:1,他引:0  
为了了解新疆伊犁地区肉牛屠宰过程中大肠杆菌的污染情况,检测非O157致病性产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,STEC)的感染情况,本试验采集新疆伊犁地区某定点肉牛屠宰场中屠宰肉牛的粪样和屠宰后的胴体表面拭子,并对样品进行了大肠杆菌的分离鉴定、毒力基因(eae、stx1、stx2)的PCR检测、O157鉴定(rfbE)、ERIC-PCR基因分型和小鼠致病性试验。结果显示,在采集的45份样品中分离鉴定出42株大肠杆菌,分离率为93.3%。其中2株菌株同时编码了毒力基因stx1和stx2,检出率为4.8%,毒力基因eae未被检出。PCR鉴定均为非O157STEC。ERIC-PCR基因分型检测发现,2株菌的基因型非常相似,同源关系密切。对小鼠进行腹腔注射攻毒,攻菌6h后,小鼠开始出现死亡,立即解剖死亡小鼠发现,其肠道出血,肝脏、脾脏、肾脏明显出血肿大,解剖对照小鼠表现正常,表明菌株具有一定的致病性。综上所述,在肉牛屠宰过程中存在大肠杆菌污染,其中粪便中非O157STEC菌株对胴体造成了污染,需要加强控制肉牛的屠宰加工关键环节的环境卫生。  相似文献   

5.
为了了解新疆伊犁地区肉牛屠宰过程中大肠杆菌的污染情况,检测非O157致病性产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,STEC)的感染情况,本试验采集新疆伊犁地区某定点肉牛屠宰场中屠宰肉牛的粪样和屠宰后的胴体表面拭子,并对样品进行了大肠杆菌的分离鉴定、毒力基因(eae、stx1、stx2)的PCR检测、O157鉴定(rfbE)、ERIC-PCR基因分型和小鼠致病性试验。结果显示,在采集的45份样品中分离鉴定出42株大肠杆菌,分离率为93.3%。其中2株菌株同时编码了毒力基因stx1和stx2,检出率为4.8%,毒力基因eae未被检出。PCR鉴定均为非O157 STEC。ERIC-PCR基因分型检测发现,2株菌的基因型非常相似,同源关系密切。对小鼠进行腹腔注射攻毒,攻菌6 h后,小鼠开始出现死亡,立即解剖死亡小鼠发现,其肠道出血,肝脏、脾脏、肾脏明显出血肿大,解剖对照小鼠表现正常,表明菌株具有一定的致病性。综上所述,在肉牛屠宰过程中存在大肠杆菌污染,其中粪便中非O157 STEC菌株对胴体造成了污染,需要加强控制肉牛的屠宰加工关键环节的环境卫生。  相似文献   

6.
为鉴定内蒙古呼和浩特地区奶牛肠道致病性大肠杆菌(E.coli)分离株的血清型、毒力基因和耐药性,本研究分别采用接种小鼠试验、玻片凝集试验、PCR方法及药敏纸片法测定E.coli分离株的致病性、血清型分布、8种毒力基因及对20种抗生素的敏感性。结果表明,从内蒙古奶牛场采集的100份粪便样品中鉴定出50株致病性E.coli(50%)。定型的24株致病性E.coli的血清型共10种,以O18、O146和O152为优势血清型,共14株,占定型菌株的58.3%。50株致病性E.coli中,毒力基因irp2、eae A、stx1、stx2和hly A的检出率分别为100%、50%、14%、10%和8%。另外,所有血清型菌株对受试的抗菌药物呈多重耐药性,并且均耐受青霉素、四环素、多西环素、利福平、复方新诺明和阿莫西林6种抗生素,而且全部含有毒力基因irp2。本研究结果为牛源致病性E.coli病的防控和临床用药提供了实验依据。  相似文献   

7.
为了了解牦牛屠宰过程中大肠杆菌污染状况、菌株所携带的毒力基因及其耐药情况。2018年11月份以随机采样方式从成都市某屠宰场采集样品150份,其中牦牛胴体拭子30份,鼻腔拭子60份,土壤拭子31份,皮毛拭子29份,应用伊红美蓝琼脂培养基和麦康凯琼脂培养基对大肠杆菌进行初步分离和鉴定,PCR法扩增分离菌株携带的主要毒力因子基因est、elt、stx、eaeA、ipaH、aggR、ehxA、hlyA、astA等,采用K-B纸片扩散法检测细菌的耐药性。结果表明:从150份牦牛屠宰样品中共分离到20株大肠杆菌,分离率为13.33%(20/150)。不同样品中大肠杆菌检出率由高到低依次为牦牛胴体拭子(16.67%,5/30)、鼻腔拭子(15.00%,9/60)、土壤拭子(12.90%,4/31)和皮毛拭子(6.90%,2/29)。从20株大肠杆菌中均检出astA基因,15株菌株检出eaeA基因,9株菌株检出aggR基因,5株菌株检出ipaH基因,3株菌株检出stx2基因,分别从1株菌株检出stx1、ehxA和hlyA基因。大肠杆菌对氨苄西林的耐药率为50%,其次为氯霉素(45%)、链霉素(5%)、四环素(5%)。说明在牦牛屠宰过程中会污染致病性大肠杆菌,对食品安全带来潜在风险。  相似文献   

8.
在牛群中分离肠出血性大肠埃希菌(EHEC),并将分离菌株与国际上流行的EHEC株之间的亲缘关系进行比较。应用PCR方法结合头孢克肟-亚碲酸钾山梨醇麦康凯琼脂(CT-SMAC)平板分离法对采集的565份样本(牛粪便397份,牛奶99份,奶牛场环境中的水样69份)进行EHEC分离和鉴定,在此基础上,对分离的菌株进行EHEC相关毒力基因的检测及致Vero细胞毒性研究。根据大肠埃希菌MLST数据库(http://mlst.ucc.ie/mlst/mlst/dbs/E.coli)提供的多位点序列分型(MLST)方案,利用MEGA 5.0软件分别对分离菌株进行分子分型及遗传进化分析。结果从565份样本中共分离到EHEC 40株,占分离样本总数的7.1%(40/565)。40株EHEC涵盖了17种血清型,以O157(4/40)、O26(4/40)、O91(7/40)、O100(4/40)、O97(6/40)、O92(2/40)为优势血清型。对40株EHEC进行相关毒力基因的检测发现,stx1、stx2、ehxA、saa基因检出率分别为82.5%(33/40)、75%(30/40)、90%(36/40)和27.5%(11/40),远高于eae(5%,2/40)、wzxO157(10%,4/40)基因检出率。38株携带stx1/stx2基因的EHEC均能产生志贺毒素,且能致Vero细胞产生病变。MLST分析表明,40株EHEC共有7个序列型(ST),其中ST297为优势序列型,占57.5%(23/40)。遗传进化分析表明,ST297型与国际上流行的EHEC具有较近的亲缘关系。本次分离的40株EHEC之间具有一定的分子多态性,与国际上流行的EHEC具有较近的亲缘关系。除了O157EHEC外,非O157EHEC对人类公共卫生安全也可构成一定威胁,因此,我国应加强对这一类菌株的监测与检测。  相似文献   

9.
为了解中国川西北牦牛肉中产志贺毒素大肠杆菌(STEC)的携带情况及stx2的亚型和特征,试验将采集的204份川西北牦牛肉样品(各25g)增菌培养后,每份挑取5个可疑菌落,采用stx1、stx2双重PCR方法检测STEC,对分离株中的stx2分型并克隆测定stx2编码区序列。结果显示,在204份样品中分离出8株STEC,平均分离率为3.9%(8/204);存在4个不同的O血清型,分别为O38(4)、O50(1)、O74(2)、O150(1);在6株含有stx2的菌株中,其中有2株为stx2a型、4株为stx2c型。结果表明牦牛源分离株氨基酸序列与人源和牛源菌株同源性较高;由stx2A、B亚基的氨基酸序列系统进化树可知,牦牛源分离株与人源、牛源菌株聚为一支,表明它们之间遗传距离相对较近,牦牛源stx2各自分布在自己的小分支中,表明牦牛源STEC stx2与人源和牛源stx2相比,尽管亲缘关系较近,但仍存在一定程度的差异。  相似文献   

10.
为了探讨牛源产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,STEC)分离株在毒力基因分布和遗传进化方面与人源EHEC O157菌株之间的关系,本试验选择收集来自江苏某奶牛场的STEC菌株18株以及人源、羊源、猪源、禽源STEC参考菌株9株,参照美国疾病预防控制中心PulseNet推荐的方法,运用XbaⅠ酶进行酶切并完成脉冲肠凝胶电泳(PFGE)分型和聚类分析;同时对部分STEC菌株进行毒力基因检测。结果表明,经毒力基因检测,不同来源的O157菌株毒力基因分布不尽相同,其中牛源STEC O157与参考株EHEC O157∶H7(EDL933W)的基因排谱最为相近;牛源STEC O18和O26的基因排谱与参考株EHEC O157∶H7(EDL933W)类似,但存在部分基因的缺失。对27株不同来源的STEC分离株进行PFGE,产生了22种不同的酶切图谱。总体来看,不同来源的STEC Dice相似性系数在72%~100%之间。牛源O157分离株与猪源及禽源O157菌株的相似度偏低,而与两株人源O157分离株的相似度偏高,Dice相似性系数在83%~95%之间,牛源O26(克隆群Ⅶ、Ⅷ)与人源O157的相似性系数 > 82%。显然,从牛群中分离到的部分STEC菌株与人源EHEC O157具有较近的遗传进化关系。  相似文献   

11.
Rectal content grab samples were collected from 2436 beef cattle reared on 406 beef farms in Japan between November 2007 and March 2008. STEC strains O157 and O26 were isolated from 110 (27.1%) and 7 (1.7%) farms, respectively. Farms that tested positive for STEC O157 were located in 35 out of all 47 Japanese prefectures. This indicates that STEC O157 strains are widespread on beef farms nationwide. Of the 2436 tested beef cattle, 218 (8.9%) and 10 (0.4%) had STEC strains O157 and O26 in the rectal content, respectively. The most common Shiga toxin genes detected in the isolated STEC O157 strains were: stx(2c) alone (32.1%), stx(2)/stx(2c) (27.2%), and stx(1)/stx(2) (21.8%). Almost all of the STEC O157 and STEC O26 strains expressed Shiga toxins (Stx). Most of the STEC O157 and STEC O26 strains possessed eaeA and EHEC-hlyA. These results strongly suggest that STEC strains O157 and O26 from beef cattle would be pathogenic to humans. Therefore, it is important to reduce STEC strains O157 and O26 in beef cattle in order to prevent foodborne disease caused by STEC. The presence of dogs and/or cats on a farm was significantly (P=0.02) associated with the prevalence of STEC O157. More research is needed to clarify the role of dogs and cats.  相似文献   

12.
Three-hundred and forty-five herds (17 swine, 122 dairy sheep, 124 beef and 82 dairy cattle) were investigated for prevalence of Shiga toxin-producing Escherichia coli (STEC). Rectal faecal samples were selectively enriched and then examined by immunodetection techniques (Immunomagnetic Separation with anti-E. coli O157 Dynabeads, ImmunoMagnetic cell Separation (IMS) and automated enzyme-linked fluorescent immunoassay using VIDAS) and polymerase chain reaction (PCR) (rfbE and fliC genes) to assess the prevalence of E. coli O157:H7. Prevalence of non-O157 STEC was estimated by PCR screening for stx genes of 10 lactose-positive colonies grown on MacConkey agar after enrichment. PCR was used on all STEC isolates to detect stx(1), stx(2), eaeA and E-hlyA genes. Both immunodetection methods showed a moderate-good level of agreement (kappa = 0.649) but IMS showed 87.5% complementary sensitivity. Prevalence of positive herds for E. coli O157:H7 was estimated at 8.7% for sheep and 3.8% for cattle, whereas all the porcine herds tested negative. Non-O157 STEC were also absent from swine, but were isolated more frequently from ovine (50.8%) than bovine herds (35.9%). Within-herd prevalences of excretion of E. coli O157:H7 established by individual testing of 279 sheep (six herds) and 30 beef cattle (one herd) were 7.3% and 6.7% respectively. PCR analysis of 49 E. coli O157:H7 and 209 non-O157 isolates showed a different distribution of virulence genes. All E. coli O157:H7 were stx(2) gene-positive, eaeA was detected in 95.9%, and the toxigenic profile stx(2)/eaeA/E-hlyA was present in 75.5% of the isolates. Among the non-O157 STEC, prevalence of eaeA was significantly lower (5.3%) and E-hlyA was present in 50.2% of the isolates but only sporadically associated with eaeA. stx(2) was predominant in non-O157 isolates from cattle, whereas in sheep the combination stx(1)/stx(2) was more prevalent. This study demonstrated the wide distribution of STEC in ruminant herds, which represent an important reservoir for strains that pose a potential risk for human infections.  相似文献   

13.
Over a 12 month period, 588 cattle faecal samples and 147 farm environmental samples from three dairy farms in southeast Queensland were examined for the presence of Shiga-toxigenic Escherichia coli (STEC). Samples were screened for Shiga toxin gene (stx) using PCR. Samples positive for stx were filtered onto hydrophobic grid membrane filters and STEC identified and isolated using colony hybridisation with a stx-specific DNA probe. Serotyping was performed to identify serogroups commonly associated with human infection or enterohaemorrhagic Escherichia coli (EHEC). Shiga-toxigenic Escherichia coli were isolated from 16.7% of cattle faecal samples and 4.1% of environmental samples. Of cattle STEC isolates, 10.2% serotyped as E. coli O26:H11 and 11.2% serotyped as E. coli O157:H7, and the E. coli O26:H11 and E. coli O157:H7 prevalences in the cattle samples were 1.7 and 1.9%, respectively. Prevalences for STEC and EHEC in dairy cattle faeces were similar to those derived in surveys within the northern and southern hemispheres. Calves at weaning were identified as the cattle group most likely to be shedding STEC, E. coli O26 or E. coli O157. In concurrence with previous studies, it appears that cattle, and in particular 1-14-week-old weanling calves, are the primary reservoir for STEC and EHEC on the dairy farm.  相似文献   

14.
Some Shiga toxin-producing Escherichia coli strains (STEC), and in particular E. coli O157:H7, are known to cause severe illness in humans. STEC have been responsible for large foodborne outbreaks and some of these have been linked to dairy products. The aim of the present study was to determine the dissemination and persistence of STEC on 13 dairy farms in France, which were selected out of 151 randomized dairy farms. A total of 1309 samples were collected, including 415 faecal samples from cattle and 894 samples from the farm environment. Bacteria from samples were cultured and screened for Shiga toxin (stx) genes by polymerase chain reaction (PCR). STEC isolates were recovered from stx-positive samples after colony blotting, and characterized for their virulence genes, serotypes and XbaI digestion patterns of total DNA separated by pulsed-field gel electrophoresis (PFGE). Stx genes were detected in 145 faecal samples (35%) and 179 (20%) environmental samples, and a total of 118 STEC isolates were recovered. Forty-six percent of the STEC isolates were positive for stx1, 86% for stx2, 29% for intimin (eae-gene) and 92% for enterohemolysin (ehx), of which 16% of the STEC strains carried these four virulence factors in combination. Furthermore, we found that some faecal STEC strains belonged to serotypes involved in human disease (O26:H11 and O157:H7). PFGE profiles indicated genetic diversity of the STEC strains and some of these persisted in the farm environment for up to 12 months. A large range of contaminated samples were collected, in particular from udders and teats. These organs are potential sources for contamination and re-contamination of dairy cattle and constitute an important risk for milk contamination.  相似文献   

15.
PROBLEM ADDRESSED: Shiga toxin-producing Escherichia coli (STEC), have emerged as food poisoning pathogens which can cause severe diseases in humans. OBJECTIVE: The aim of this study was to determinate the serotypes and virulence genes of STEC strains isolated from sheep in Spain, with the purpose of determining whether sheep represent a potential source of STEC pathogenic for humans. METHODS AND APPROACH: Faecal swabs obtained from 697 healthy lambs on 35 flocks in Spain during the years 2000 and 2001 were examined for STEC using phenotypic (Vero cells) and genotypic (PCR) methods. RESULTS: STEC O157:H7 strains were isolated from seven (1%) animals in six flocks, whereas non-O157 STEC strains were isolated from 246 (35%) lambs in 33 flocks. A total of 253 ovine STEC strains were identified in this study. PCR showed that 110 (43%) strains carried stx(1) genes, 10 (4%) possessed stx(2) genes and 133 (53%) both stx(1) and stx(2). Enterohaemolysin (ehxA) and intimin (eae) virulence genes were detected in 120 (47%) and in 9 (4%) of the STEC strains. STEC strains belonged to 22 O serogroups and 44 O:H serotypes. However, 70% were of one of these six serogroups (O6, O91, O117, O128, O146, O166) and 71% belonged to only nine serotypes (O6:H10, O76:H19, O91:H-, O117:H-, O128:H-, O128:H2, O146:H21, O157:H7, O166:H28). A total of 10 new O:H serotypes not previously reported in STEC strains were found in this study. Seven strains of serotype O157:H7 possessed intimin type gamma1, and two strains of serotype O156:H- had the new intimin zeta. STEC O157:H7 strains were phage types 54 (four strains), 34 (two strains) and 14 (one strain). CONCLUSIONS: This study confirms that healthy sheep are a major reservoir of STEC pathogenic for humans. However, because the eae gene is present only in a very small proportion of ovine non-O157 STEC, most ovine strains may be less pathogenic.  相似文献   

16.
In order to evaluate the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains, 197 fecal samples of healthy cattle from 10 dairy farms, four beef farms and one slaughterhouse at Rio de Janeiro State, Brazil, were examined for Shiga toxin (Stx) gene sequences by polymerase chain reaction (PCR). For presumptive isolation of O157:H7 E. coli, the Cefixime-potassium tellurite-sorbitol MacConkey Agar (CT-SMAC) was used. A high occurrence (71%) of Stx was detected, and was more frequently found among dairy cattle (82% vs. 53% in beef cattle), in which no differences were observed regarding the age of the animals. Dot blot hybridization with stx1 and stx2 probes revealed that the predominant STEC type was one that had the genes for both stx1 and stx2 in dairy cattle and one that had only the stx1 gene for beef cattle. Three (1.5%) O157:H7 E. coli strains were isolated from one beef and two dairy animals by the use of CT-SMAC. To our knowledge, this is the first report of O157:H7 isolation in Brazil. A PCR-based STEC detection protocol led to the isolation of STEC in 12 of 16 randomly selected PCR-positive stool samples. A total of 15 STEC strains belonging to 11 serotypes were isolated, and most of them (60%) had both stx1 and stx2 gene sequences. Cytotoxicity assays with HeLa and Vero cells revealed that all strains except two of serotype O157:H7 expressed Stx. The data point to the high prevalence of STEC in our environment and suggest the need for good control strategies for the prevention of contamination of animal products.  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) are a public health concern. Bacterial culture techniques commonly used to detect E. coli O157:H7 will not detect other STEC serotypes. Feces from cattle and other animals are a source of O157:H7 and other pathogenic serotypes of STEC. The objective of this study was to estimate the pen-level prevalence of Shiga toxins and selected STEC serotypes in pre-slaughter feedlot cattle. Composite fecal samples were cultured and a polymerase chain reaction (PCR) was used to detect genes for Shiga toxins (stx1 and stx2) and genes for O157:H7, O111:H8, and O26:H11 serotypes. Evidence of Shiga toxins was found in 23 pens (92%), O157:H7 in 2 (8%), O111:H8 in 5 (20%), and O26:H11 in 20 (80%) of the 25 pens investigated. Although pen-level prevalence estimates for Shiga toxins and non-O157 serotypes seem high relative to O157:H7, further effort is required to determine the human health significance of non-O157 serotypes of STEC in feedlot cattle.  相似文献   

18.
The aims of this study were to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains in pigs as a possible STEC reservoir in India as well as to characterize the STEC strains and to determine the antimicrobial resistance pattern of the strains. A total of 782 E. coli isolates from clinically healthy (n?=?473) and diarrhoeic piglets (309) belonging to major pig-producing states of India were screened by the polymerase chain reaction (PCR) assay for the presence of virulence genes characteristic for STEC, that is, Shiga toxin-producing gene(s) (stx1, stx2), intimin (eae), enterohemolysin (hlyA) and STEC autoagglutinating adhesin (Saa). Overall STEC were detected in 113 (14.4 %) piglets, and the prevalence of E. coli O157 and non-O157 STEC were 4 (0.5 %) and 109 (13.9 %), respectively. None of the O157 STEC isolates carried gene encoding for H7 antigen (fliCh7). The various combinations of virulence genes present in the strains studied were stx1 in 4.6 %, stx1 in combination with stx2 gene in 5.1 %, stx1 in combination with stx2 and ehxA in 0.6 %, stx1 in combination with stx2 and eae in 0.2 % and stx2 alone in 3.7 %. All STEC isolates were found negative for STEC autoagglutinating adhesin (Saa). The number of STEC isolates which showed resistance to antimicrobials such as ampicillin, tetracycline, streptomycin, lincomycin, nalidixic acid, sulfadiazine, penicillin, gentamicin, kanamycin and ceftriaxone were 100, 99, 98, 97, 95, 94, 92, 88, 85 and 85, respectively. Ninety-seven isolates showed resistance to more than 2 antimicrobials, and 8 resistance groups (R1 to R8) were observed. This study demonstrates that pigs in India harbour both O157 and non-O157 STEC, and this may pose serious public health problems in future.  相似文献   

19.
In order to determine the occurrence, serotypes and virulence markers of Shiga toxin-producing Escherichia coli (STEC) strains, 153 fecal samples of cattle randomly selected from six dairy farms in Sao Paulo State, Brazil, were examined for Shiga toxin (Stx) production by the Vero cell assay. Feces were directly streaked onto MacConkey Sorbitol Agar and incubated at 37 degrees C overnight. Sorbitol-negative colonies (maximum 20) and up to 10 sorbitol-positive colonies from each plate were subcultured onto presumptive diagnostic medium IAL. Sorbitol-negative isolates were screened with O157 antiserum for identification of O157:H7 E. coli. Isolates presenting cytotoxic activity were submitted to colony hybridization assays with specific DNA probes for stx1, stx2, eae, Ehly and astA genes. The isolation rate of STEC ranged from 3.8 to 84.6% depending on the farm analysed. STEC was identified in 25.5% of the animals, and most of them (64.1%) carried a single STEC serotype. A total of 202 STEC isolates were recovered from the animals, and except for the 2 O157:H7 isolates all the others expressed cytotoxic activity. The great majority of the STEC isolates carried both stx1 and stx2 genes (114/202, 56.4%) or stx2 (82/202, 40.6%); and whereas the Ehly sequence occurred in most of them (88%) eae was only observed in O157:H7 and O111:HNM isolates. Serotypes O113:H21, O178:H19 and O79:H14 were the most frequent STEC serotypes identified and widely distributed among animals from different farms, while others such as O77:H18, O88:H25 and O98:H17 occurred only in particular farms. This is the first report on the occurrence of STEC in dairy cattle in Sao Paulo State, and the results point to substantial differences in rate of isolation, serotypes and genetic profile of STEC that has been previously described among beef cattle in our community. Moreover, to our knowledge O79:H14 and O98:H17 represent new STEC serotypes, while O178:H19 has only been recently reported in Spain.  相似文献   

20.
A total of 42 Shiga toxin-producing (STEC) strains from slaughtered healthy cattle in Switzerland were characterized by phenotypic and genotypic traits. The 42 sorbitol-positive, non-O157 STEC strains belonged to 26 O:H serotypes (including eight new serotypes) with four serotypes (O103:H2, O113:H4, O116:H-, ONT:H-) accounting for 38.1% of strains. Out of 16 serotypes previously found in human STEC (71% of strains), nine serotypes (38% of strains) were serotypes that have been associated with hemolytic-uremic syndrome (HUS). Polymerase chain reaction (PCR) analysis showed that 18 (43%) strains carried the stx1 gene, 20 strains (48%) had the stx2 gene, and four (9%) strains had both stx1 and stx2 genes. Of strains encoding for stx2 variants, 63% were positive for stx2 subtype. Enterohemolysin (ehxA), intimin (eae), STEC autoagglutinating adhesin (saa) were detected in 17%, 21%, and 19% of the strains, respectively. Amongst the seven intimin-positive strains, one possessed intimin type beta1 (O5:H-), one intimin gamma1 (O145:H), one intimin gamma2/theta, (O111:H21), and four intimin epsilon (O103:H2). The strains belonged to 29 serovirotypes (association between serotypes and virulence factors). O103:H2 stx1eae-epsilon ehxA, O116:H- stx2, and ONT:H- stx2c were the most common accounting for 29% of the strains. Only one strain (2.4%) of serovirotype O145:H- stx1stx2eae-gamma1ehxA showed a pattern of highly virulent human strains. This is the first study providing characterization data of bovine non-O157 STEC in Switzerland, and underlining the importance of the determination of virulence factors (including intimin types) in addition to serotypes to assess the potential pathogenicity of these strains for humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号