首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 499 毫秒
1.
用含复合芽孢杆菌(105cfu/g饲料,枯草芽孢杆菌和解淀粉芽孢杆菌以1∶1比例混合)的基础日粮,按体重3%的日投饵量,饲喂体重(51.37±0.58)g的草鱼(Ctenopharyngodon idellus),饲养实验45 d。结果表明:与对照组相比,处理组肠道内容物胰蛋白酶活性提高了79.46%(P<0.01);肝胰腺脂肪酶活性提高了16.82%(P<0.01),肝胰腺淀粉酶和胰蛋白酶活性无显著差异(P>0.05)。肠道菌群数量分析显示,处理组肠道芽孢杆菌数均显著提高(P<0.01),弧菌和大肠杆菌数显著降低(P<0.01)。结果提示,饵料中添加复合芽孢杆菌能够改善草鱼肠道菌群组成,并提高消化道特定消化酶活性。  相似文献   

2.
本试验研究了饲料中添加芽孢杆菌对草鱼生长、肠粘膜抗氧化功能及养殖水体水质的影响。选取平均体重为(51.0±2.3)g的健康草鱼300尾,随机分成3组(对照组、处理组1和处理组2),每组3个重复,每个重复50尾鱼。其中对照组饲喂基础日粮,处理组1和2分别饲喂含复合芽孢杆菌(105 cfu/克饲料,枯草芽孢杆菌和解淀粉芽孢杆菌以1:1比例混合)和枯草芽孢杆菌(105 cfu/克饲料)的基础日粮。试验期为45d。结果表明,饲料中添加芽孢杆菌对养殖水体pH和硝酸盐氮含量无显著影响,但显著降低了从第21d到试验结束期间水体中亚硝酸盐氮的含量(处理组1第35d除外)。芽孢杆菌的添加同时显著降低草鱼的死亡率(P<0.05),并提高了草鱼的增重率和特定生长率。与对照组相比,处理组1和2草鱼的增重率分别提高了52.93%(P<0.01)和21.78%(P<0.05),特定生长率分别提高了44.44%(P<0.01)和16.67%(P<0.05);而且处理组1草鱼增重率和特定生长率分别比处理组2提高了25.58%(P<0.01)和23.81%(P<0.01)。肠粘膜抗氧化活性研究表明,与对照组相比,饲料中添加芽孢杆菌能提高草鱼肠粘膜超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性。以上结果提示,饲料中添加芽孢杆菌可以改善养殖水质和草鱼肠粘膜抗氧化功能,并显著促进草鱼生长并降低死亡率。  相似文献   

3.
为研究饲料中添加枯草芽孢杆菌(Bacillus subtilis WTC019)对草鱼生长性能、消化酶活性和抗氧化功能的影响,选取平均体重为(146.23±14.56)g的健康草鱼,对照组(A组)只投喂基础饲料,试验组(B、C、D组)分别投喂含106、107、108CFU/g B.subtilis WTC019的基础饲料,试验60 d。结果显示:试验组草鱼的增重率和特定生长率均显著高于对照组,草鱼肠道中的淀粉酶、脂肪酶和胰蛋白酶的活性均显著高于对照组,其中D组的草鱼肠道淀粉酶和脂肪酶活性最高,C组的草鱼胰蛋白酶活性最高。添加组过氧化氢酶、超氧化物歧化酶和谷胱甘肽含量均显著高于对照组,谷胱甘肽过氧化物酶的活性变化不显著。由此得出,B.subtilis WTC019可提高草鱼的消化酶的活力和抗氧化功能,进而可促进草鱼生长。  相似文献   

4.
泥鳅养殖水体中一株芽孢杆菌的筛选及其净水效果研究   总被引:1,自引:0,他引:1  
从泥鳅(Misgurnus anguillicaudatus)养殖池塘水体中分离到4株芽孢杆菌,筛选后获得1株优势目的菌株NQ1;根据形态学特征和生理生化特性结果,将其鉴定为枯草芽孢杆菌(Bacillus subtilis)。安全性试验证实,试验浓度(最高为1×107 cfu/mL)的枯草芽孢杆菌NQ1对泥鳅是安全的。水质净化试验结果显示,在泥鳅养殖水体中加入1×107 cfu/mL浓度的NQ1,14天后氨氮和亚硝酸盐含量较对照组分别降低34.97%和89.46%,表明该菌的净水效果明显,具有作为水质改良微生态制剂开发应用的潜力。  相似文献   

5.
为研究芽孢杆菌对草鱼养殖水质的影响,选取体重约45g的草鱼210尾,随机分为2组,每组设3个平行重复.对照组在水中不添加任何菌,处理组每隔7d分别向水中按照1×108 cfu/m3添加芽孢杆菌菌粉,二组均饲喂基础日粮.草鱼养殖水体水质测定结果表明:与对照组相比,第28天处理组氨氮含量比对照组下降29.17%(P<0.05).亚硝酸盐氮含量无显著性差异且在0.39 mg/L以下.第14天时,处理组硝酸盐氮含量比对照组降低60.26%( P<0.01),在第21天和第28天分别比对照组提高26.98%(P<0.05)和67.85%(P<0.01).处理组的总无机氮含量在21d内无显著差异,第28天时下降了15.39%(P>0.05).养殖水体pH值维持在6.8~7.6,各组之间无显著差异.养殖水体中添加芽孢杆菌可降低氨氮含量,改善养殖水体水质.  相似文献   

6.
在基础饲料中分别添加不同剂量的凝结芽孢杆菌(Ⅰ:1.0×1011cfu/kg饲料,Ⅱ:3.0×1011cfu/kg饲料,Ⅲ:6.0×1011cfu/kg),室外水族箱中饲养奥尼罗非鱼(Oreochromis niloticus×O.aureus)(34.50±0.25 g),用基础饲料投喂作为对照,每饲料组设三个重复,每水族箱随机放养16尾鱼,投喂率为3%。采用静水饲养以避免各箱之间水的交换。56 d后测定鱼体的生长和消化酶活性。结果显示:不同添加量的凝结芽孢杆菌均能显著提高奥尼罗非鱼胃、肝胰脏和肠道蛋白酶活性(P<0.05),但酶的活性随添加量的提高呈下降趋势。凝结芽孢杆菌的添加对胃、肝胰脏和肠道淀粉酶及脂肪酶活性没有显著影响(P>0.05)。Ⅰ组和Ⅱ组的干物质表观消化率、蛋白质消化率、相对增重率、饵料系数和蛋白质效率均显著高于对照组(P<0.05),而Ⅲ组和对照组之间差异不显著(P>0.05)。结果提示,饲料中添加1.0×1011cfu/kg饲料的凝结芽孢杆菌就能显著促进奥尼罗非鱼的生长和饲料营养物质的利用,满足最佳生长。  相似文献   

7.
对软烤扇贝加工过程中物料的细菌特性和有关理化特性进行了研究,并对细菌菌群进行了定性和定量分析。结果表明,实验室加工中,水分含量和水分活度(Aw)的降低都主要发生在调味腌制、焙干过程,最终产品水分含量为42%左右,Aw为0.902±0.003。工厂加工在焙干、烤制过程水分含量和Aw的降低较多,成品水分含量为42%左右,Aw为0.910±0.007,控制良好。实验室加工pH下降主要发生在调味腌制过程,产品pH为5.83左右,工厂产品pH没有明显下降,最终pH为6.70左右,不符合标准要求。实验室加工原料菌落总数是(4.47±1.59)×102cfu/g,在调味摆盘和包装过程分别上升到(1.35±0.83)×103cfu/g、(7.30±0.53)×102cfu/g,在焙干、烤制过程分别下降到(5.43±0.67)×102cfu/g、(2.90±0.75)×102cfu/g,二次杀菌冷却后产品菌落总数均小于300 cfu/g。工厂加工原料菌落总数为(9.08±0.20)×103cfu/g,焙干过程上升至(4.69±0.10)×105cfu/g,烤制过程下降到(1.12±0.40)×104cfu/g,包装过程上升至(2.58±0.20)×106cfu/g。二次杀菌冷却后3个产品中,有1个产品细菌总数为340 cfu/g,不符合企业标准要求。实验室烤制冷却后样品的主要菌群为芽孢杆菌,但仍含有小比例的葡萄球菌。二次杀菌冷却后,样品中仅残存芽孢杆菌,无球菌。工厂二次杀菌冷却后样品中主要菌群为芽孢杆菌,但仍含有相当数量的球菌,比例接近1/3,表明其生产过程不良,产品质量安全存在一定的问题。  相似文献   

8.
为探讨枯草芽孢杆菌(Bacillus subtilis)在鱼类养殖池塘中的生态作用,采用直接往养殖水体中投放该制剂的方法,研究分析微生物数量及其与环境因子的相关关系。结果显示,枯草芽孢杆菌,实验池数量为0.35×10~3~1.45×10~3cfu/m L,对照池为0.04×10~3~0.08×10~3cfu/m L;浮游植物生物量,实验池为0.094~1.521 mg/L,对照池为0.103~0.763 mg/L,实验池中枯草芽孢杆菌数量和浮游植物生物量均高于对照组。试验鱼塘中枯草芽孢杆菌与硅藻数量呈显著正相关,相关系数0.844(P0.05);当溶氧≥6 mg/L时,枯草芽孢杆菌与亚硝酸盐氮含量呈显著负相关,相关系数-0.915(P0.05)。溶氧过低(2 mg/L)时,枯草芽孢杆菌对亚硝酸盐氮、氨氮没有明显的降解作用;溶氧≥6 mg/L时,对亚硝酸盐氮、氨氮的降解作用明显。研究表明,投放适量浓度的枯草芽孢杆菌能有效改善养殖水体状况,对水质起到进一步净化作用。  相似文献   

9.
枯草芽孢杆菌对克氏原螯虾免疫机能的影响   总被引:8,自引:4,他引:8  
在饲料中分别添加0、1×109、3×109和5×109cfu/kg枯草芽孢杆菌(Bacillus subtilis),测定投喂相应饲料后第1、4、7、14、21、28天以及停止投喂枯草芽孢杆菌后的第7、14天克氏原螯虾(Procam barus clarkii)的血淋巴吞噬活性、血清溶菌活力、抗菌活力以及酚氧化酶活力。结果显示:实验组(含枯草芽孢杆菌的饲料组)的吞噬活性于投喂枯草芽孢杆菌后第7天开始显著高于对照组(P<0.05);实验组的溶菌活力、抗菌活力明显高于对照组(P<0.05),并在停药后仍维持较高水平(P<0.05);此外,酚氧化酶活力也有所增加。本研究表明,枯草芽孢杆菌对克氏原螯虾的免疫机能有促进作用。  相似文献   

10.
枯草芽孢杆菌HAINUP40水质净化作用的研究   总被引:2,自引:0,他引:2  
在筛选得到适宜枯草芽孢杆菌HAINUP40生长的最佳液体培养基基础上,探讨枯草芽孢杆菌HAINUP40对2种模拟废水及养殖废水的水质净化作用。生长曲线测定结果显示,枯草芽孢杆菌HAINUP40在不同培养基中的生长速度不同,由快到慢依次为普通淡水培养基细菌基础培养基2216E培养基普通海水培养基;氨氮降解筛选培养基试验表明,枯草芽孢杆菌HAINUP40对氨氮的降解效果显著,在试验的第4d时氨氮去除率达到最高值(57.58%);8.64×105cfu/mL、8.64×10~6 cfu/mL、8.64×10~7 cfu/mL 3种密度的枯草芽孢杆菌HAINUP40对模拟废水的净化试验结果显示,枯草芽孢杆菌HAINUP40均可显著降低模拟废水中的化学需氧量和pH值,在第24h,试验组化学需氧量去除率均超69%,而且pH均降至6.7~6.9(对照组为8.0);8.64×106 cfu/mL枯草芽孢杆菌HAINUP40对高含量氨氮和化学需氧量模拟废水的净化效果试验表明,该菌株在第7d时对化学需氧量的去除率达到90.37%。8.64×10~6cfu/mL枯草芽孢杆菌HAINUP40对养殖废水的净化效果试验表明,该菌株在第12h时对亚硝酸盐的去除率达到94.12%,在72h时对化学需氧量的去除率达到72.13%。试验结果显示,枯草芽孢杆菌HAINUP40可显著降低水体中的亚硝酸盐、氨氮和化学需氧量,具有较好水质净化效果。本试验为枯草芽孢杆菌HAINUP40在罗非鱼生产中作为潜在的水质改良剂提供了数据资料和科学依据。  相似文献   

11.
在水温25~30℃下,将体质量为(110.23±0.43)g的草鱼饲养在3.0 m×2.0 m×1.2 m的加盖网箱中,分别投喂添加0%(对照组)、0.5%和2%的由芽孢杆菌、乳酸菌以及酵母菌复配且以麸皮为载体制成的微生态制剂(8.0×10~9 cfu/g)的膨化饲料饲养60 d,探究微生态制剂对草鱼生产性能和肠结构、菌群及酶活性的影响。试验结果显示,饲料中添加2%微生态制剂显著提高草鱼质量增加率、特定生长率(P<0.05),显著降低饲料系数、脏体比(P<0.05);饲料中添加2%微生态制显著提高肠伸展率、中肠肌层厚度和绒毛高度(P<0.05),提高中肠淀粉酶和脂肪酶活性(P<0.05)。饲料中添加微生态制剂增加草鱼肠道菌群α多样性、丰富度;改变草鱼肠道微生物组成,门水平上,对照组的草鱼肠道微生物中梭杆菌门和厚壁菌门含量最高(63.56%、32.52%)。0.5%添加组的草鱼肠道微生物中梭杆菌门和厚壁菌门含量最高(61.82%、20.27%)。2%添加组的草鱼肠道微生物中厚壁菌门含量最高(64.20%)。属水平上,2%添加组草鱼肠道优势菌属直接发生改变,Paeniclostridium和Erysipelatoclostridium丰度大幅上升。随着微生态制剂添加量的增加,肠道微生物的代谢功能增强,组成中与无机离子转运和代谢、碳水化合物转运与代谢、氨基酸转运与代谢等功能相关的菌群丰度升高。综上可知,饲料中添加芽孢杆菌、乳酸菌以及酵母菌等组成的微生物制剂可作为生产草鱼绿色饲料的重要措施。  相似文献   

12.
小浪底水库每年需进行调水调沙,水库水位剧降,最高落差可达50m,最大流量达4 000m~3/s以上,严重破坏水库水生动植物资源和渔业生态环境,影响小浪底水库网箱养鱼等。2013年以前,小浪底水库通常以6m×6m×2.5m和15m×8m×2.5m网箱养殖鲤和草鱼。本文针对小浪底水库调水调沙的特点,研究一种新型、环保、生态、高效、优质的网箱生态养殖大规格鲢鳙模式,2014年11月-2015年6月进行试验。试验网箱6m×6m×4m,箱间距5m,箱行距30m,每箱投放体质量800~1 000g/尾的鲢鳙鱼种150尾左右,养殖240~260d,出箱规格达到1 500~2 500g/尾,成活率91.5%,箱产值3 500~4 500元,净利润1 862元。养殖过程中不投喂。  相似文献   

13.
短时间微流水处理对池塘养殖草鱼鱼肉品质的提升作用   总被引:2,自引:0,他引:2  
陈周  胡杨  安玥琦  吕昊  郭晓东  尤娟  熊善柏 《水产学报》2020,44(7):1198-1210
以池塘养殖草鱼为对象,采用室内微流水系统处理草鱼,研究处理时间(0、1、4、7和10 d)对草鱼鱼肉基本营养组成、滋味特征和滋味成分、气味特征和气味成分、感官评分的影响,以评价短时间微流水处理对草鱼鱼肉品质的提升作用。结果显示,微流水处理对草鱼鱼肉的基本营养成分、滋味成分、气味成分和感官评分均有显著影响。随着微流水处理时间延长,草鱼鱼肉中脂肪和总糖含量显著下降、灰分含量显著增加,但鱼肉中蛋白质含量无明显差异。滋味分析仪(电子舌)和气味分析仪(电子鼻)检测结果表明,微流水处理能显著改变草鱼鱼肉的滋味特征和气味特征。处理后的草鱼鱼肉中IMP、鲜味氨基酸(天冬氨酸和谷氨酸)、甜味氨基酸(丝氨酸和丙氨酸)、苦味氨基酸(亮氨酸和异亮氨酸)含量显著增加,而其总挥发性盐基氮(TVB-N)、二十二碳六烯酸(DHA)等含量显著减少。微流水处理4 d的草鱼鱼肉气味评分、滋味评分和色泽评分显著高于处理0和1 d的草鱼样品,而与处理7和10 d的草鱼样品无差异。研究表明,短时间微流水处理能有效提升草鱼鱼肉品质,适宜处理时间为4 d,处理后的草鱼鱼肉腥味明显减弱、鲜味明显增强。  相似文献   

14.
在草鱼(Ctenopharyngodon idellus)养殖池中进行鱼蚌综合养殖试验,以探究三角帆蚌(Hyriopsis cumingii)吊养密度和深度对水质、鱼和蚌生长的影响。试验共分4个处理组,三角帆蚌放养模式分别为对照组0只/m^3(C)、水下40 cm处单层吊养9只/m^ 3(D-6)、水下40 cm处单层吊养18只/m^3(D-12)、水下40 cm和80 cm处双层吊养18只/m^ 3(S-12)。结果显示:试验期间,各组透明度和溶氧均随时间的延长呈现下降趋势。吊养组(D-6、D-12、S-12)TN、NH+4-N和COD的平均含量均低于C组。各组TP平均含量无显著差异。吊养三角帆蚌后草鱼的成活率和增重率显著提高,其中D-12组鱼和蚌的存活率和增重率最高。同等三角帆蚌密度下,单层吊养(D-12)的水质化学指标、鱼和蚌的存活率和增重率均优于双层吊养(S-12)。从改善水质、鱼蚌生长情况等指标考虑,在草鱼养殖池中,三角帆蚌最佳吊养密度和深度分别为18只/m^3和40 cm。  相似文献   

15.
五种植物免疫增强剂对草鱼非特异免疫力的影响   总被引:1,自引:0,他引:1  
在水温20~26℃下,用网箱饲养法研究了绿原酸(A组)、枸杞多糖(B组)、金丝桃素(C组)、黄芪多糖(D组)、植物血凝素(E组)对平均体重43克草鱼(Ctenopharyngodon idellus)血清超氧化物歧化酶(SOD)、碱性磷酸酶(AKP)及过氧化氢酶(CAT)活性的影响。结果显示,基础饲料中添加0.165、0.33、0.66g·kg-1的枸杞多糖;0.165、0.33、0.66g·kg-1的金丝桃素;0.165、0.66g·kg-1黄芪多糖;0.1、0.2g·kg-1绿原酸的试验组,超氧化物歧化酶的活力比对照(O组)显著增强(P0.05)。但在含免疫增强剂的试验组间差异不显著。当饲料中添加0.4g·kg-1绿原酸的试验组,超氧化物歧化酶极显著提高(P0.01)。而碱性磷酸酶、过氧化氢酶试验组与对照组无显著差异。只是金丝桃素、绿原酸使碱性磷酸酶活性有增强的趋势;植物血凝素使过氧化氢酶的活性有升高的程度。60d的饲养表明,饲料中添加适量的枸杞多糖、金丝桃素、绿原酸及黄芪多糖可以显著提高草鱼的超氧化物歧化酶活性,对增强草鱼的非特异性免疫功能具有重要作用。  相似文献   

16.
在水温(25±2)℃下,分别在基础饲料中添加不同剂量的硬葡聚糖(0.2%,G1组;0.4%,G2组)绿原酸(0.04%,G3组;0.08%,G4组)和金丝桃素(0.066%,G5组;0.132%,G6组),连续投喂放在1.0m×0.5m×1.0m网箱内、体质量110±5g的草鱼(Ctenopharyngodon idellus)幼鱼35d,以未添加者为对照组,探讨三种添加剂对草鱼幼鱼生长和免疫功能的影响。结果表明,三种添加济对草鱼幼鱼增重率和特定生长率均影响不显著,当饲料中添加0.08%的绿原酸时,草鱼幼鱼末体质量和肝体比显著增加(P〈0.05);三种添加剂都可显著提高碱性磷酸酶活性,其中以添加0.08%的绿原酸效果最好,添加剂各组间碱性磷酸酶活性差异不显著(P〉0.05);0.132%金丝桃素组的草鱼血清超氧化物歧化酶活性显著高于对照组,其它试验组与对照组差异不显著;饲料中添加0.2%硬葡聚糖可显著提高草鱼幼鱼血清溶菌酶含量(P〈0.05);三种添加剂对草鱼幼鱼血清中丙二醛的含量影响不显著(P〉0.05)。  相似文献   

17.
任洪涛  林霖 《水产科学》2016,(6):644-648
在水温(20±1)℃下,采用静水测试法研究水体中不同质量浓度Cr6+(120.00、160.80、215.47、288.73、386.90mg/L,重铬酸钠配制)对体质量约10g草鱼脑和肝胰脏的组织结构及肝胰脏中超氧化物歧化酶活性的影响,以探讨重金属的毒性积累和毒性机制。试验结果表明,Cr6+对草鱼的24、48、96h半数致死质量浓度(LC50)分别为302.77、154.47、78.89mg/L,由(48hLC50×0.3)/(24h LC50/48hLC50)2和96hLC50×0.1计算出安全质量浓度分别为12.068mg/L和7.489mg/L。中毒初期肝细胞轻微肥大,无序离散,细胞核相对缩小,胞浆轻微展出;随着时间的延长,肝胰脏异常的程度更加严重,甚至肝坏死,肝细胞明显肥大,无序性离散程度明显增大,细胞核明显缩小,肝细胞胞浆展出,细胞空化;脑细胞开始出现破裂,细胞液溢出,细胞核轻微聚集;随后脑细胞的异常程度更加严重,细胞破裂、细胞核聚集程度严重。随着Cr6+质量浓度的升高和时间的延长,草鱼肝胰脏中超氧化物歧化酶活性降低。  相似文献   

18.
以枯草芽孢杆菌为主的主要用于促进鱼类消化生长的微生态制剂I、多种混合微生物主要用于调节水质的微生态制剂II,或是两者混合使用的方法,比较研究了黑龙江省及辽宁省池塘养殖的鲤(Cyprinus carpio)、鲫(Carassius auratus)和草鱼(Ctenophyargodon idellus)的增重率、饲料系数...  相似文献   

19.
任洪涛 《水产科学》2016,(4):415-419
水温(20±1)℃,采用静水测试法研究了养殖水体中不同质量浓度Zn2+(0、9.52、13.14、18.30、25.02、34.53mg/L)对体质量约10g的草鱼脑和肝胰脏的组织结构及肝胰脏中超氧化物歧化酶活性的影响,探讨重金属的毒性积累和毒性机制。试验结果表明,Zn2+对草鱼的24、48h和96h半致死质量浓度分别为23.058、19.317、10.155mg/L,由公式(48hLC50×0.3)/(24hLC50/48hLC50)2和96hLC50×0.1计算出安全质量浓度分别为4.068mg/L和1.0155mg/L。中毒初期草鱼脑细胞轻微聚集,细胞核微增大;随时间延长脑异常加重,细胞聚集明显,核增大几乎充满整个脑细胞;肝胰脏细胞膨大,离散,核缩小,胞浆轻微溢出,少数肝胰脏细胞胞浆溢出,残留的核物质散乱分布,肝胰脏细胞凝固性坏死。随着Zn2+质量浓度的升高和时间延长,草鱼肝脏中超氧化物歧化酶活性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号