首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice productivity in rainfed paddy fields varies with seasonal changes of water availability in which the conditions of flooding are affected by the water balance. Hydrometeorological measurements were performed in a rainfed paddy field in Northeast Thailand from July 2004 to December 2006 to analyze the water balance. As a result of our measurements, climatologically conditions were classified as semi-humid with an annual precipitation of 1,100 mm/year and annual potential evaporation of 1,660 mm/year in both the year. The surface layer of the paddy soil was clayey and the hydraulic conductivity was very low, so groundwater levels remained below the soil surface even under flooded conditions during the rainy season. Seasonal changes in the amount of soil water were very small, comprising only less than 16% of the total precipitation during the rainy season. Consequently, an effective precipitation of less than 180 mm was enough to establish standing water in the rainfed paddy field. Shinkichi Goto, Tsuneo Kuwagata and Pisarn Konghakote contributed equally to the paper.  相似文献   

2.
Due to the recent regulation of rice production in Japan, it has become necessary to convert rice paddy to other field crops production. To achieve this, drainage conditions, especially for surface drainage, must be improved. We propose the introduction of a slight slope to improve surface drainage, but the optimal slope must be determined in order to prevent soil erosion caused by excessive slope, as well as increased cost. In Japan, a 0.1% slope has recently come into widespread use and, therefore, the impact on surface drainage must be quantified. In this report, observations were carried out to quantify the impact of a 0.1% slope for converted rice paddy and the following results were obtained: (1) An approximate 0.1% slope enables improvement of 46% of the soil surface saturation area as compared to flat conditions about 10 h after inundation; and (2) Inundated water remains on a flat field, while it moves downward toward the end on a sloped field. These results give a basis for determining a slope on a rice paddy in terms of surface drainage improvement. However, the optimal slope should be decided from various perspectives including engineering, agronomy, and economics etc.  相似文献   

3.
All of steady and non-steady subsurface drainage equations were developed mostly based on water flow pattern in an ordinary field conditions. However, subsurface drainage in a paddy field is quite different from subsurface drainage in an ordinary field. Thus, it is necessary to develop new equations and mathematical models to design subsurface drainage system in a paddy field. The objective of this study was to apply the HYDRUS-2D model, based on the Richard’s equation, to simulate water flow under subsurface drainage in a paddy field for various drain depths (0.5, 0.75 and 1.0 m) and spacings (7.5 and 15.0 m), surface soil textures (clay loam and silty clay loam) and crack conditions. Simulation results were compared with two well-known drainage equations. The maximum drainage rate was obtained under 7.5-m spacings and 1-m depth. With increasing drain spacings, the drainage rate decreased. Drain spacings had more effect on drainage rate and water pressure head as compared to drain depth. Drainage rates calculated by the Hooghoudt’s and Murashima and Ogino’s equations were much lower than those calculated by the Richard’s equation. The Hooghoudt’s equation, developed for ordinary fields, did not perform well for paddy fields. This study also proved the importance of cracks in subsurface drainage system of paddy fields. HYDRUS-2D stands as a robust tool for designing subsurface drainage in a paddy field.  相似文献   

4.
River water and groundwater are used to irrigate paddy fields and are also principal sources of drinking water for humans. It is important to understand the transport characteristics of water (e.g., direction and intensity of water flow), when grasping a pollution situation in the soil. Endo and Hara (Soc Inst Contr Eng Trans Ind App 2:88–95, 2003) developed the Quintuple-Probe Heat-Pulse (QPHP) sensor to identify water flux density vectors and thermal properties under saturated and steady state conditions. However, there has not yet been any investigation of moisture transfer under transient conditions such as during internal drainage and mid-summer drainage of paddy fields. Only Sand has been used in previous experiments, and examinations with Loamy and Clayey soils have not yet led to done. Simultaneous measurements of the water flux density vectors and thermal properties of soil texture of three types under drainage conditions as well as the soil moisture transfer analysis with Finite Element Method (FEM), were done. The representative drainage flow was indicated as downward, except in the Sandy-Clayey Loam, in which the rightward flux exceeded the downward flux owing to anisotropy of the soil-pore structure and hydraulic conductivity. The apparent horizontal/vertical advanced distance was introduced in order to know about how water moved through the soil column. The estimated volumetric water content was in good agreement with the measured value. Thus, this measurement method was shown to be valid under transient water flow conditions.  相似文献   

5.
A field experiment was performed at two Korean research sites to evaluate water and nutrient behavior in paddy rice culture operations for 2 years. One site was irrigated with groundwater, whereas the other site was irrigated with surface water. Both sites received average annual rainfall of about 1,300 mm, and about 70–80% of it was concentrated during July–September coinciding with rice growing season. Although most of the nutrient outflow was attributed to plant uptake, nutrient loss by surface drainage was substantial. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient behaviors in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and practical planning model that could be used to evaluate nutrient loading from paddy rice fields alone or in combination with other complex watershed models. Further validation might be required for general application of the PADDIMOD to the simulation of paddy rice fields with various agricultural environments.  相似文献   

6.
A water balance model for paddy is developed primarily based on the principle of conservation of mass of soil–water within the root zone. The water balance for paddy is different from that of field crops because paddy requires standing water in the field during most of its growth period. This model requires soil, crop and meteorological data as inputs. This user friendly model was developed using computer programmes C and Visual Basic (VB) 6.0. It simulates various water balance components such as evapotranspiration, deep percolation, surface runoff and depth of irrigation water and ponding depth in the field on a daily basis. For estimation of deep percolation loss, physically based saturated and unsaturated flow processes are incorporated into the model to consider ponding (if there is standing water in the field), saturation (if moisture content of soil is in between field capacity and saturation) and depletion (if moisture content of soil is below field capacity) phases of paddy field. This article presents development of a user friendly water balance model for paddy and also its validation using published data.  相似文献   

7.
Promoting biomass utilization, the objectives of this study were to clarify the spatial distribution of nitrogen, one of the most important fertilizer components in the methane fermentation digested slurry (i.e., the digested slurry), and to establish an effective method to apply spatial-uniformly digested slurry with irrigation water in the rice paddy field. A numerical model describing the unsteady two-dimensional flow and solution transport of paddy irrigation water was introduced. The accuracy of this model was verified with a field observation. The tendencies of the TN simulated in inlet and outlet portions had good agreement with the measured data and the accuracy of the numerical model could be verified. Using the numerical model, scenario analyses were conducted to determine the method for spatial-uniform application of the digested slurry with irrigation water. The simulated results indicated that drainage of the surface water and trenches at the soil surface were effective for spatial-uniform application of the digested slurry with irrigation water in the rice paddy fields. The effect of the trenches was maximized when the surface water of the rice paddy field was drained adequately.  相似文献   

8.
A field experimental study was performed during the growing season of 2001 to evaluate water and nutrient balances in paddy rice culture. Three plots of standard fertilization (SF), excessive fertilization (EF, 150% of SF), and reduced fertilization (RF, 70% of SF) were used and the size of treatment plot was 3,000 m2, respectively. The hydrologic and water quality was field monitored throughout the crop stages. The water balance analyses indicated that approximately half (47–54%) of the total outflow was lost through surface drainage, with the remainder consumed by evapotranspiration. Statistical analysis showed that there was no significant effect of fertilization rates on nutrient outflow through the surface drainage or rice yield. Reducing fertilization of rice paddy may not work well to mitigate the non-point source nutrient loading in the range of normal farming practices. Instead, the reduction in surface drainage could be important to controlling the loading. Suggestive measures that may be applicable to reduce surface drainage and nutrient losses include water-saving irrigation by reducing ponded water depth, raising the weir height in diked rice fields, and minimizing forced surface drainage as recommended by other researchers. The suggested practices can cause some deviations from conventional farming practices, and further investigations are recommended.  相似文献   

9.
Intensive use of chemical fertilizer for crops may be responsible for nitrogen and phosphate accumulation in both groundwater and surface waters. The return flow polluted by nutrients not only results in the limitation of water reuse goals but also creates many environmental problems, including algal blooms and eutrophication in neighboring water bodies, posing potential hazards to human health. This study is to evaluate the N-fertilizer application of terraced paddy fields impacting return flow water quality. Water quality monitoring continued for two crop-periods around subject to different water bodies, including the irrigation water, drainage water at the outlet of experimental terraced paddy field, and shallow groundwater were conducted in an experimental paddy field located at Hsin-chu County, Northern Taiwan. The analyzed results indicate that obviously increasing of ammonium-N (NH4 +-N) and nitrate-N (NO3 ?-N) concentrations in the surface drainage water and ground water just occurred during the stage of basal fertilizer application, and then reduced to relatively low concentrations (<0.1 mg/l and <3 mg/l, respectively) in the remaining period of cultivation. The experimental results demonstrate the potential pollution load of nitrogen can be reduced by proper drainage water control and fertilizer application practices.  相似文献   

10.
转Bt基因水稻Cry1Ab杀虫蛋白在水稻土中的降解   总被引:8,自引:0,他引:8  
室内研究了转 Bt基因水稻克螟稻 2号和华池B6 叶片中的Cry1Ab杀虫蛋白在稻田水稻土中的降解动态。分别将克螟稻 2号的粉碎叶片和华池B6 的整张叶片埋入 3种土壤 (即老黄筋泥田、青紫泥田和黄松田 )中 ,此后每隔 6~ 10d测定土壤或叶片中的Cry1Ab含量。克螟稻 2号粉碎叶片中的Cry1Ab均以处理后的前 36d,尤其是前 6d的降解较快 ,其中在青紫泥田中最快 ,黄松田中最慢。在处理后 6~ 36d内 ,不同土壤中的Cry1Ab残留量有显著差异 ,黄松田中的明显最高 ,老黄筋泥田中的次之 ,青紫泥田中的为最低 ;此后土壤间的残留量差异逐渐缩小 ,至处理后 78d差异已不明显。土壤淹水可显著加快华池B6 叶片中Cry1Ab的降解 ,且淹水后其降解动态在不同土壤之间十分相似 ;淹水对Cry1Ab降解的促进作用仅发生在前 12d之内 ,此后多数时间内残留量在淹水与非淹水处理间无显著差异。建立了各处理中Cry1Ab降解的动力学指数方程 ,相应地得出了其降解的半衰期。还讨论了土壤有机质和微生物等因子对土壤中Cry1Ab降解的影响。  相似文献   

11.
Curbing nutrient loads from rice cultivation has been an issue for the water quality management of surface water bodies in the Asian monsoon region. The objectives of this study were to develop paddy BMP scenarios and to evaluate their effectiveness on nutrient loads reduction using long-term model simulation. Totally five BMP scenarios were developed based on the three paddy farming factors of drainage outlet height, fertilizer type, and application amount and were compared with conventional practices. CREAMS-PADDY model was chosen for the paddy nutrient simulation, and two-year field experimental data were used for the model calibration and validation. The validated model was used to evaluate the developed BMP scenarios for the 46 years of simulation period. The observed nutrient loads were 15.2 and 1.45 kg/ha for nitrogen and phosphorus, respectively, and mainly occurred by early season drainage and rainfall runoff in summer. The long-term simulation showed that the soil test-based fertilization and drainage outlet raising practice were the two most effective methods in nutrient loads reduction. The combination of these two resulted in the greatest loads reduction by 29 and 37 % for T-N and T-P, respectively (p value < 0.001). Overall the effectiveness of the BMP scenarios was decreased in the wet season. As the conclusion, outlet height control and soil nutrient-based fertilization were suggested as the effective practices in paddy loads reduction and their combination can be a practicable BMP scenario for the paddy nutrient management.  相似文献   

12.
水稻田表水磷素的动态特征及其潜在环境效应的研究   总被引:23,自引:0,他引:23  
通过独立排灌式磷肥大田试验探讨了水稻田表水磷素的动态特征及其潜在的环境效应。研究发现, 施入磷肥增加了田表水磷素水平, 首次水样总磷水平为0.201~ 1.301 mg/kg, 溶解磷水平为0.058~ 0.926 mg/kg; 在等量施磷的条件下, 与单施无机磷肥比较, 有机无机磷配施能显著地提高田表水磷素水平; 在首次采样的一周之内, 两者总磷水平相差达3.85~1.89 倍, 但随着时间的推移, 因施磷结构的不同导致田表水磷素水平的差异逐渐缩小并趋于一致。任一次田间排水都存在诱发附近水域水体富营养化的可能。从减少磷素流失的角度出发, 在施磷灌水后约一周之内或田间耘田时, 田间排水磷素流失潜能增大, 另外, 还要避免在雨水集中的季节施用磷肥。  相似文献   

13.
Subsurface drainage is a prerequisite for year-round crop production in a large area of northern Iran, s paddy fields. Minimizing environmental and health issues related to nitrogen (N) losses through subsurface drainage systems provides suitable condition for sustainable agriculture in these fields. A field study was conducted to evaluate nitrogen loss and its health risk in the conventional and subsurface-drained paddy fields. Ammonium, nitrate, and total N concentrations of subsurface drainage effluents, surface runoff, and leachates were monitored during three successive rice-canola-rice growing seasons from July 2011 to August 2012. Different components of N balance and health risk of nitrate leaching to groundwater were also investigated. Ammonium in drainage effluents collected during the experimental period ranged from approximately zero to 1.72 mg L?1, while nitrate fluctuated from 0.5 to 28.6 mg L?1. Average nitrate concentration in leachates of subsurface-drained area was 7.7–81.4 % higher than that in subsurface drainage effluents, while it was 126.8 % higher than that in surface runoff for the conventional field. Subsurface drainage provided a better utilization of soil N through providing winter cropping and reduced the potential for non-carcinogenic risks of nitrate leaching to groundwater. The results are encouraging for producers engaged in rice-canola production in the study area with respect to the environment and human health quality.  相似文献   

14.
Experiments were conducted to determine the fate of bensulfuron-methyl (BSM) and imazosulfuron (IMS) under paddy conditions. Initially, laboratory experiments were conducted and the photolysis half-lives of the two herbicides were found to be much shorter than their hydrolysis half-lives in aqueous solutions. In the aerobic water?Csoil system, dissipation followed first-order kinetics with water half-lives of 9.1 and 11.0?days and soil half-lives of 12.4 and 18.5 days (first phase) and 35.0 and 44.1 days (second phase) for bensulfuron-methyl and imazosulfuron, respectively. However, the anaerobic soil half-lives were only 12.7 and 9.8?days for BSM and IMS, respectively. The values of K d were determined to be 16.0 and 13.8 for BSM and IMS, respectively. Subsequent field measurements for the two herbicides revealed that dissipation of both herbicides in paddy water involved biphasic first-order kinetics, with the dissipation rates in the first phase being much faster than those in the second phase. The dissipation of bensulfuron-methyl and imazosulfuron in the paddy surface soil were also followed biphasic first-order kinetics. These results were then used as input parameters for the PCPF-1 model to simulate the fate and transport of BSM and IMS in the paddy environment (water and 1-cm surface soil layer). The measured and simulated values agreed well and the mass balance error during the simulation period was ?1.2 and 2.8% of applied pesticide, respectively, for BSM and IMS.  相似文献   

15.
介绍了水稻保墒旱直播幼苗旱长的平田施肥、冬灌蓄足底墒、开春及时平田整地和保墒、整地、施促底肥、种子处理、播种、培育壮苗、适时追肥、晒田、适时收割等栽培技术,并对其抵抗自然灾害的能力强、品种选用范围扩大、生产效率高、生态效益大、经济效益等特点进行了分析。指出了目前该技术存在问题及注意事项,并根据实践提出相应的建议。  相似文献   

16.
A new coupled model (PCPF–SWMS) was developed for simulating fate and behavior of pollutant in paddy water and paddy soil. The model coupled the PCPF-1, a lumped model simulating pesticide concentrations in paddy water and 1 cm-surface sediment compartment, and the SWMS-2D, a finite element numerical model solving Richard's and advection-dispersion equations for solute transport in soil compartment. The coupling involved improvements on interactions of the water flow and the concentration the pollutant of at the soil interface between both compartments. The monitoring data collected from experimental plots in Tsukuba, Japan in 1998 and 1999 were used to parameterise and calibrate hydraulic functioning, hydrodynamic and hydrodispersive parameters of the paddy soil. The analysis on the hydraulic functioning of paddy soil revealed that the hard pan layer was the key factor controlling percolation rate and tracer transport. Matric potential and tracer monitoring highlighted the evolution of saturated hydraulic conductivity (K S) of hard pan layer during the crop season. K S slightly decreased after puddling by clay clogging and strongly increased after mid term drainage by drying cracks. The model was able to calculate residential time in every soil layers. Residential time of tracer in top saturated layers was evaluated to be less than 40 days. It took 60 days to reach the unsaturated layers below hardpan layer.  相似文献   

17.
Chiyoda basin is located in Saga Prefecture in Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River to which the excess water in the basin is drained away. Chiyoda basin has a total area of about 1,100 ha and is a typical flat and low-lying paddy-cultivated area. The main environmental issue in this basin is total nitrogen (TN) and total phosphorus (TP) load management because TN and TP, which loaded from farmlands, degrade surface water as a result of anthropogenic eutrophication. This paper presents a mathematical model of TN and TP runoff during an irrigation period in Chiyoda basin in order to elucidate the pollutant fluxes that accompany water transportation in paddy fields and drainage canals, and to evaluate pollutant removal from the study area to the Chikugo River. First, the water flow and the algorithm of gate operation were simulated by a continuous tank model and the accuracy of the model was then evaluated by comparing the simulated water levels with observed ones during an irrigation period. The observed and simulated water levels were in good agreement, indicating that the proposed model is applicable for drainage and water supply analyses in flat, low-lying paddy-cultivated areas. Second, the TN and TP runoff during an irrigation period was simulated based on the TN and TP loads that were determined by observed data in paddy fields. For TN runoff, the simulated results and observed data were in good agreement whereas for TP runoff, the simulated results were higher than the observed data. However, if the settled TP within the paddy tank was calculated as 6%, then the simulated results and the observed data were in good agreement. We concluded that TN runoff from paddy field to the drainage canal system was not affected much by the sediment related process. The present study could provide farmers and managers with a useful tool for controlling the water distribution in an irrigation period, and the TN and TP loads in the downstream area as well as the Chikugo River.  相似文献   

18.
南方红壤丘陵区土壤细菌对土壤水分和温度的响应差异   总被引:1,自引:0,他引:1  
红壤丘陵区稻田不同时期进行的水分管理导致土壤水分和温度同时变化,继而影响土壤微生物群落结构,二者对土壤微生物的影响机制目前还不清楚。本研究以中国科学院桃源农业生态实验站长期定位试验的稻田作为研究对象,同时以旱地农田作为对照,利用末端限制性酶切片段长度多态性分析(T-RFLP)和荧光定量PCR(qPCR)方法,研究不同水分管理时期细菌群落结构与丰度的变化特征,进而分析其变化的影响因素,阐明水分和温度的相对贡献。结果表明,稻田土壤细菌受土壤水分状况的显著影响,淹水期土壤细菌群落结构明显区别于其他时期,且淹水期土壤细菌丰度和多样性指数均显著低于晒田期。稻田土壤细菌群落结构和多样性指数均受到土壤含水量和土壤温度的显著影响,但土壤含水量的相关性大于土壤温度。而作为对照的旱地农田土壤含水量在不同时期没有差异,土壤细菌群落结构也没有差异,仅土壤细菌丰度和多样性指数发生一定变化,但这种变化并不与土壤温度呈现相关性。因此,本研究认为,南方丘陵区农田土壤细菌对土壤水分的响应比对土壤温度更敏感。  相似文献   

19.
Rice (Oryza sativa L.) has become a monoculture in the saline lands of the Ebro Valley, Spain. The studied farm has produced rice since the 1970s; one exception was 1999, which enabled us to map the soil salinity. The farm had lateral salinity variations mirrored by the development of rye grass (Lolium multiflorum Lam.) planted in 1999. Our objective is to prove the value of a non-deterministic method using electromagnetic induction (EMI) to map the salinity of the rootable layer in the unfavorable circumstances of a paddy having shallow saline and quasi-artesian water table underneath a continuous densic layer. From our EMI readings and soil sampling, we draw a map of the electrical conductivity of saturated paste extracts (ECe) of the upper soil layer (0–40 cm), with ECe ranging from 1.6 to 20.8 dS m?1 and a mean of 7.9 dS m?1. A main achievement was the establishment of an easy procedure not requiring either: (i) knowledge regarding the salinity of the water table or the relationships between EMI readings and the deep soil composition; or (ii) a normal distribution of the EMI readings or of the ECe; or (iii) assumptions about the physical dimensions of the EMI readings. Our procedure will allow ECe to be mapped on other similar salt-affected paddies, helping to decide if a paddy can be planted with alternate crops for production, weed control, or soil structure improvement.  相似文献   

20.
《Plant Production Science》2013,16(4):255-261
Abstract

To elucidate the effect of drainage of paddy fields on root lodging tolerance in direct-sown rice, we measured the pushing resistance (R), diameter of hill at the base (Dm), shoot dry weight (Ws) and root dry weight (Wr), in rice varieties grown using several irrigation management schemes that differed in the frequency and length of field drainage during the growing season. Soil hardness was also monitored to investigate the relationship between the variance of soil physical properties caused by different irrigation treatments and root lodging tolerance. Pushing resistance moment (Rh), i.e., product of pushing resistance (R) and height of pushed part of hill (h), showed higher values in rice grown in fields drained more frequently or for longer periods. A similar pattern was found in rice grown in field plots where root penetration to the subsoil layers was prevented by laying an unwoven cloth between the topsoil and subsoil layers. Higher values for pushing resistance efficiency based on root dry weight (Kr : Rh/Wr/Dm) were also found in plots subjected to more frequent or prolonged drainage, irrespective of rice variety. Soil hardness was progressively increased by each field drainage during the growing season, and showed a highly significant relationship with Kr. The above results suggest that field drainage increases the root lodging tolerance in direct-sown rice through improvement of anchoring ability caused by increased soil hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号