首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Ⅰ型马立克病病毒(MDV)基因组中针对132 bp串联重复序列的两侧合成一对引物,应用PCR技术对临床病例采集的疑似马立克病肿瘤病变鸡肝组织和1日龄接种CVI988弱毒疫苗的健康雏鸡羽髓样本进行检测。结果表明,从临床病例采集的10份肝脏组织,7份扩增出一条314 bp的条带,相当于2个拷贝数的132 bp串联重复序列;在接种疫苗健康雏鸡的羽髓样本中,扩增出与CVI988弱毒一致的PCR图谱,相当于6个~8个或更多拷贝数的132 bp串联重复序列。根据PCR图谱的差异即可鉴别MDV强毒株与CVI988疫苗弱毒株。  相似文献   

2.
Serotype 1 strains of Marek's disease virus (MDV1), except attenuated vaccine strains, are known to cause lymphomas in visceral organs of infected chickens. To know additional genetic differences between oncogenic and nononcogenic MDV1, polymerase chain reaction (PCR) was performed to amplify the meq gene of the viral genome. In addition to the 1,062-bp band including the native meq open reading frame (ORF), a 1.2-kb band was amplified from the DNA sample prepared from chick embryo fibroblast infected with an attenuated strain, CVI988, but not with oncogenic strains. Sequence analysis of the 1.2-kb band showed that a 178-bp sequence was inserted to the meq ORF of CVI988. This ORF could encode for the Meq protein with a different transactivator domain. Southern blot analysis also confirmed the insertion of the 178-bp sequence in the meq ORF of CVI988. This insertion of 178-bp sequence may explain the reason why CVI988 is not oncogenic.  相似文献   

3.
For the easy survey of Marek's disease virus (MDV), feather tip-derived DNA from MDV-infected chickens can be used because feather tips are easy to collect and feather follicle epithelium is known to be the only site of productive replication of cell-free MDV. To develop a diagnostic method to differentiate highly virulent strains of MDV from the attenuated MDV vaccine strain, CVI988, which is widely used, nested polymerase chain reaction (PCR) was performed to detect a segment of the meq gene in feather tip samples of chickens experimentally infected with MDV. In chickens infected with Md5, a strain of oncogenic MDV, the meq gene was consistently detected, whereas the L-meq gene, in which a 180-base pair (180-bp) sequence is inserted into the meq gene, was detected in CVI988-infected chickens. Moreover, the meq gene was mainly detected even in chickens co-infected with both Md5 and CVI988. These results suggest that this method is appropriate for the surveillance of the highly virulent MDV infection in the field.  相似文献   

4.
In the genome of strains of very virulent Marek's disease virus serotype 1(vvMDV1), such as Md5 and RB1B, the meq open reading frame (ORF) encoding a 339-amino-acid bZIP protein, is present, while a slightly longer meq ORF, termed as L-meq, in which a 180-bp sequence is inserted into the meq ORF is found in other strains of MDV1, such as CV1988/R6 and attenuated JM. When chickens were infected with vvMDV1 strains and the meq gene was amplified by nested polymerase chain reaction (PCR), the meq gene was detected throughout the experimental period for 7 weeks post inoculation (pi). However, the L-meq gene was also detected at 3 to 5 weeks and 3 to 4 weeks pi. in Md5-infected and RB1B-infected chickens, respectively. In the case of chickens infected with an attenuated MDV1, the JM strain, the L-meq gene was detected at 2 to 7 weeks pi., and the meq gene was also detected at 2 to 6 weeks pi. Both L-meq and meq genes were detected in chickens infected with an attenuated nononcogenic vaccine strain of MDV1 (CVI988/R6), throughout the experimental period. Though quantitative PCR was not performed, a larger amount of the PCR products corresponding to the L-meq than the meq gene was amplified from chickens infected with JM or CVI988/R6. These results suggest that a dynamic population shift between the MDV subpopulations displaying meq and L-meq genes occurs in chickens during the course of MDV infection. Since the MDV subpopulation that displays the L-meq gene only displays it during the latent phase, the L-meq and its gene product, if any, might contribute to the maintenance of the MDV latency.  相似文献   

5.
Marek's disease is an economically important lymphoid neoplasm of chickens, caused by oncogenic strains of Marek's disease herpesvirus. The disease can be successfully controlled by vaccination with attenuated or non-pathogenic MDV strains. However, vaccine failures do occur as field strains continue to evolve towards pathotypes of greater virulence, and this evolution is likely to be driven by the vaccines themselves. Two general strategies can be considered to improve protection by vaccination. Firstly by the development of novel vaccines, and secondly by maximizing the potential of existing vaccines. This second goal requires investigation of optimal timing and vaccine delivery route, and optimal vaccination regimes for different breeds of chick. Accurate quantitation of Marek's disease vaccine virus in vaccinated chicks will contribute significantly to our understanding of vaccinal protection. We recently developed a real-time polymerase chain reaction (PCR) assay for quantitation of CVI988 vaccine virus in the feather tips, a rich source of viral DNA which can easily be sampled in a non-invasive manner. This PCR test is now used commercially to confirm the successful vaccination of chicks. We have also used the PCR to examine various aspects of vaccination in experimental chicks and commercial chicks with a view to determining how vaccine level in feathers correlates with protection against challenge, and for identifying optimal timing and vaccine delivery route, and optimal vaccination regimes for different breeds of chick. In this article we review some aspects of the current vaccinal control of Marek's disease, before highlighting some of the problems associated with current vaccines and vaccination strategies, and the challenges for the future. We go on to discuss the development and use of our real-time PCR feather test, its current applications and potential opportunities in Marek's disease vaccine research.  相似文献   

6.
The meq gene was thought to be only detected in Marek's disease virus serotype 1 (MDV 1) including a very virulent strain, Md5, while L-meq, in which a 180-bp sequence is inserted into the meq open reading frame, is found in other strains of MDV 1, such as CVI 988/R6. However, both meq and L-meq were previously detected by PCR in chickens infected with MDV 1, suggesting that MDV 1 may consists of at least two subpopulations, one with meq, the other with L-meq. To further analyze these subpopulations, we analyzed the time course changes in distribution of these subpopulations among T cell subsets from chickens infected with MDV 1. Both meq and L-meq were detected in CD4+ and CD8+ T cells infected with strain Md5 or CVI 988/R6. The shift in MDV subpopulations from one displaying meq to the other displaying L-meq and/or the conversion from meq to L-meq occurred mainly in the CD8+ T cell subset from Md5-infected chickens. PCR products corresponding to L-meq rather than meq were frequently amplified from the CD8+ T cell subset from CVI 988/R 6 -infected chickens. These results suggest that a dominant subpopulation of MDV 1 changes depending on the T cell subsets, and that L-meq is dominantly present in the CD8+ T cells which play a role in the clearance of pathogenic agents.  相似文献   

7.
In a certain area of Shandong province, Marek's disease (MD) occurred in diseased chickens that had been vaccinated by turkey herpesvirus.In order to isolate the virus strain and detect the virus pathogenicity, agar diffusion test, cell culture and indirect immunofluorescence assay (IFA) were used to isolate the Marek's virus from chicken's blood and feather marrow.The isolated strain was adapted to grow in chick embryo fibroblasts (CEF).Genes involved in pathogenesis of MDV, such as meq, pp38 and 132 bp repeat sequence were amplified by PCR.The obtained sequences were compared with that of standard strains published in GenBank by DNAStar software.The results showed that pp38 gene of the SDAU-1 shared homology from 100% with standard virulent sequence.Analysis of 132 bp repeat sequence and meq gene sequences of the viral genome showed that the isolated virus belongs to the highly virulent MDV strains.  相似文献   

8.
山东省某地区鸡马立克氏病疫苗免疫鸡群暴发马立克氏病(MD),为分离得到致病毒株,检测其致病性,采用琼脂扩散试验、细胞培养和间接免疫荧光试验(IFA)等方法从发病鸡的血液及羽髓中分离到一株适应鸡胚成纤维细胞(CEF)生长的马立克氏病病毒。采用PCR方法扩增分离毒株的meq、pp38、132bp重复序列等病毒致病相关基因,所得序列用DNAStar软件与GenBank上登录的参考毒株进行比对分析。结果显示,该分离株SDAU-1的pp38基因与标准强毒序列同源性为100%,132bp重复序列的拷贝数及meq基因的变异均符合MDV强毒株的序列特征。  相似文献   

9.
The ‘gold standard’ vaccine against Marek’s disease in poultry is the CVI988/Rispens virus, which is not easily distinguishable, antigenically or genetically, from virulent Marek’s disease herpesvirus. Accurate differential measurement of the CVI988 vaccine and virulent viruses is important to investigate mechanisms of vaccinal protection. Minimal sequence differences between CVI988 and virulent MDV strains restrict the application of molecular diagnostic methods such as real-time PCR to distinguish between these viruses. The use of bacterial-artificial-chromosome (BAC) cloned CVI988 virus, which carries the BAC vector sequences in place of the Us2 gene, allows its differential quantification from virulent strains using real-time PCR assays that target the BAC vector sequence and the US2 gene respectively. These novel assays allowed investigation of replication of both serotype-1 vaccine virus (cloned CVI988) and challenge virus (RB-1B strain) in tissues of individual chickens in an experimental vaccination-challenge model of Marek’s disease.  相似文献   

10.
The meq gene encoding a 339-amino-acid bZIP transactivator protein has been identified as a candidate oncogene of Marek's disease virus serotype 1 (MDV1), which induces malignant lymphomas in chickens. We have previously reported that, in addition to meq, L-meq, in which a 180-bp sequence is inserted into the region encoding the transactivation domain of meq, is also detected in chickens experimentally infected with MDV. To further analyze the diversity in meq, PCR was performed using a primer set which specifically amplify the proline-rich repeat (PRR) region in the transactivation domain of meq. In CVI988/R6, a vaccine strain of MDV1, and JM, an MDV1 strain attenuated by prolonged passage in vitro, a major band of a 0.8 kb corresponding to L-meq as well as a minor band of 0.6 kb corresponding to meq was detected by PCR. Furthermore, extra 0.5- and 0.3-kb bands, corresponding to genes termed as short meq (S-meq), and very short meq (VS-meq), respectively, were also detected. These genes were also detected in MDV-transformed cell lines, MSB1 and MTB1. In Md5, an oncogenic MDV1, attenuated by prolonged passage in vitro, the 0.6-kb meq was consistently detected, and 0.5-kb S-meq was occasionally detected. This diversity in meq was due to the difference in the copy number of the PRR region: L-meq and meq contained 9 and 6 copies of PRR while 4 and 2 copies of PRR were present in S-meq and VS-meq, respectively. Thus, the meq gene is polymorphic in the attenuated MDV1 and the MDV-transformed cell lines, and gene products from different meq genes may have different functions from each other.  相似文献   

11.
应用鸭胚成纤维细胞(DEF)从曾免疫过CVI988/Rispens株疫苗的患马立克氏病(MD)肿瘤的三黄鸡中分离到一株马立克氏病病毒(MDV,命名为GXY2株。用禽肿瘤病聚合酶链式反应(PCR)鉴别诊断技术对患鸡的肿瘤组织病料及克隆纯化毒株的DEF培养物进行检测,结果均扩增到MDV-1强毒株的132-bpr特异性带和网状内皮组织增殖病病毒(REV)的长末端重复序列(LTR)。用基于抗MDV-1的gB蛋白单克隆抗体BA4、MEQ蛋白单克隆抗体3G12E6和抗REV的单克隆抗体11B118分别对毒株的培养物进行间接免疫荧光试验(IFA),结果样品只与抗MDV-1的单克隆抗体呈现阳性反应,而与抗REV的单克隆抗体呈现阴性反应。应用PCR技术扩增并测定了毒株的致瘤相关基因meq的核苷酸序列,并与其他MDV-1参考毒株的序列进行比较分析,结果发现其序列与我们之前分离鉴定的MDV-1野强毒株G2和YL040920高度同源。研究的结果表明,分离株GXY2为整合有REVLTR片段的重组MDV强毒株。  相似文献   

12.
Zhang Y  Sharma JM 《Avian diseases》2001,45(3):639-645
CVI988, a serotype 1 Marek's disease virus (MDV), was used as an in ovo vaccine in specific-pathogen-free chickens to determine if this virus induces early posthatch protection against Marek's disease as has been shown previously for turkey herpesvirus. MDV CVI988 was injected at embryonation day (ED) 17 (group 1) or at hatch (group 2). A third group (group 3) was left unvaccinated. At 1, 2, 3, 4, 5, and 7 days of age, chickens from each group were sampled and examined as follows: a) single-cell suspensions of spleen were inoculated onto chicken embryo fibroblast monolayers to isolate the virus; b) sections of bursal tissues were stained by indirect immunofluorescence assays with anti-pp38 monoclonal antibody to identify viral antigen expression; and c) chickens were exposed intra-abdominally to MDV RB1B, a virulent serotype 1 MDV. Results revealed that in chickens given MDV CVI988 at ED 17, virus and virus-encoded protein were not detected until chickens were 3 and 2 days old after hatching, respectively. Results also indicated that during the first 4 days after hatch, the chickens given MDV CVI988 at ED 17 were better protected against virulent MDV than those given MDV CVI988 at hatch (P < or = 0.001). These results suggested that MDV CVI988 proteins were adequately expressed in the embryo to initiate prehatch immunologic response. Additional efforts with more sensitive techniques than used in this study are needed to identify the nature of viral expression in embryos.  相似文献   

13.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

14.
15.
Improved vaccines to control Marek's disease (MD) in chickens are desired by the poultry industry but have been difficult to develop. Studies were conducted to evaluate strategies for deriving MD vaccines of high protective efficacy, irrespective of virulence. Candidate viruses from parent strains representing v and vv+ pathotypes were modified by cell culture passage, backpassage in chickens, or insertional mutagenesis following cocultivation with retroviruses. Ten strains considered most likely to exhibit high protective efficacy were selected for further study. The ability of these modified viruses to protect commercial or maternal antibody-positive (ab+) chickens against virulent MD virus (MDV) challenge was compared with that of strain CVI988, the standard commercial MD vaccine. Modified strains were also evaluated for the ability to induce lymphomas or other pathologic changes in ab+ and antibody-negative (ab-) chickens. Two of the 10 modified viruses, strains RM1 and CVI988/BP5, provided high levels of protection against highly virulent MDV challenge. The magnitude of protection was greater than that of one laboratory and two commercial preparations of CV1988, but was approximately equal to that of two other commercial preparations of CVI988 in laboratory and field tests. Three of the strains, including RMI and CVI988/BP5, induced lymphoid organ atrophy in ab-chicks but not in ab+ commercial chicks, a property designated here as L phenotype. Seven strains, including two L+ strains, were mildly oncogenic for ab- chicks, a property designated here as O phenotype. Five of these strains caused no tumors in ab+ chickens. The two fully attenuated strains induced neither lymphomas nor lymphoid organ atrophy. The L and O phenotypes appeared not to be linked, and both (especially the L phenotype) appeared associated with high levels of protection. These studies also illustrated differences in the protective efficacy of different preparations of CVI988 vaccine, indicating the need to choose carefully the most protective strains as controls for efficacy studies. A new vv+ strain, designated as 686, is described and appears useful as a challenge virus; it is the most virulent of the 48 field isolates of MDV thus far pathotyped in this laboratory. These findings support the conclusion that new virus strains with high levels of protective immunity comparable to that of CVI988 can be developed. However, the question of whether strains can be developed that exceed the efficacy of current CVI988-based vaccines remains unanswered. After more than 30 years of unsuccessful endeavor by many laboratories toward this goal, it now may be useful to consider whether the efficacy of MD vaccines is limited by some type of biologic threshold.  相似文献   

16.
本实验以独立启动子控制的增强型绿色荧光基因(GFP)作为报告基因,同时将CMV启动子及其多克隆位点与之连接,构成外源基因表达盒,插入到马立克病毒(MDV)复制非必需区基因(短独特区US2等)构成的同源臂中,构建成重组马立克病毒的通用载体。鉴定正确后,将转移载体与提取的MDV基因组共转染鸡胚成纤维细胞(CEF),同源重组获得具有感染性的重组病毒,待病毒蚀斑出现后,荧光显微镜下观察,可见到明显的绿色荧光病毒蚀斑,经三次筛选,初步分离到重组病毒。结果表明,转移载体与MDV基因组共转染可获得感染性病毒,US2基因可作为重组病毒构建中的外源基因插入位点,证实通用转移载体的构建是可行的,为重组马立克病毒新型疫苗的研究奠定物质基础。  相似文献   

17.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

18.
R F Silva 《Avian diseases》1992,36(3):521-528
There are no simple, direct methods to reliably distinguish oncogenic serotype 1 Marek's disease viruses (MDVs) from their attenuated variants. The present study was an attempt to apply polymerase chain reaction (PCR) to develop a rapid and sensitive assay for the presence of the MDV genome. PCR oligos were chosen to flank the 132-base-pair tandem direct repeats in the serotype 1 MDV genome. The PCR reaction was specific for serotype 1 MDVs, amplifying fragments corresponding to one to three copies of the tandem repeats present in Md11/8, JM/102W, and GA viruses. A high-molecular-weight DNA smear was observed when the DNA from an attenuated Md11/100 was PCR-amplified. Use of the PCR technique allowed the detection of two copies of the 132-base-pair repeat in the DNA extracted from MDV-induced lymphomas removed from two chickens. No DNA was amplified from the DNA extracted from lymphomas induced by either an avian leukosis virus (RAV-1) or reticuloendotheliosis virus (chick syncytial virus).  相似文献   

19.
采用聚合酶链反应或反转录聚合酶链反应扩增出H5亚型禽流感病毒(AIV)的HA基因、网状内皮增生症病毒的长末端重复序列(LTR)、马立克氏病病毒(MDV)Rispens CVI988毒株基因组的sorf 1和sorf 2序列、两端带loxp位点的lac/smGFP标志基因,构建含这些基因的转移载体质粒pMHA;以MDV Rispens CVI988毒株的基因组DNA和PMHA质粒DNA共转染鸡胚成纤维细胞(CEF),采用同源重组方法将LTR、lac/smGFP和HA基因插入到MDV基因组,获得重组病毒rMDV-HA/GFP;以cre介导的同源重组去除lac/smGFP标志基因,再转染CEF,获得仅带LTR启动子和HA基因的重组MDV疫苗毒株rMDV-HA.rMDV-HA仍保留了MDV RispensCVI988疫苗毒株的复制特点,并能稳定表达AIV的HA.  相似文献   

20.
分别以7种鸡MD疫苗免疫SPF鸡和狼山鸡,用琼脂扩散试验(AGP)检查鸡群MDV强毒攻击后不同时期的羽囊抗原,结果表明,免疫组鸡羽囊排毒高峰推迟,排毒率下降,排毒高峰维持时间短,不同疫苗免疫不同品种鸡后排毒情况有差异,CVI988和两种二价苗效果优于HVT苗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号