首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 921 毫秒
1.
为挖掘真实有效的小麦耐盐性数量性状位点(quantitative trait loci,QTL),利用生物信息学方法,借助小麦高密度分子标记遗传图谱,对来自不同遗传背景群体的215个耐盐性QTL进行图谱整合、映射以及元分析。通过建立QTL一致性图谱,获得100个一致性QTL( meta quantitative trait loci,MQTL)位点,不均匀分布在21条染色体上;存在3个耐盐性MQTL热点区域,分别位于4A染色体的Xgwm219~Xbarc78标记区间、3B染色体的Xwpt 800213~Xwpt 9432标记区间和7B染色体的Xbarc176~Xwgp45标记区间,分别包含7、5和6个MQTL。  相似文献   

2.
粒形是影响小麦籽粒产量和品质的重要参数,是由多基因控制的复杂数量性状。为发掘控制小麦粒形相关的真实主效数量性状位点(quantitative trait loci, QTL),本研究利用BioMercator 4.2软件,以小麦高密度分子标记遗传图谱为参考图谱,对来自不同遗传作图群体的113个控制小麦粒长的QTL和86个控制粒宽的QTL进行图谱整合、映射以及QTL元分析。通过建立QTL一致性图谱,获得18个控制小麦粒长和8个控制粒宽的一致性QTL(meta quantitative trait loci, MQTL)位点,置信区间最小可达到0.57 cM,主要分布在2B、2D、3A、3B、4B、5A、5B和7D染色体上。在5A染色体Xgwm293~Xgwm304和Xgpw2120~Xgpw2273a标记区间内,预测到7个与小麦粒长和粒宽相关的候选基因。本研究为小麦粒形QTL精细定位以及分子标记辅助选择育种提供理论依据。  相似文献   

3.
在干旱胁迫条件下,小麦营养器官暂贮性可溶性碳水化合物(Water-soluble carbohydrates,WSC)是小麦籽粒灌浆所需的重要碳源。为发掘控制小麦籽粒WSC含量的真实主效数量性状位点(Quantitative trait loci,QTL),利用生物信息学方法,借助小麦高密度分子标记遗传图谱,对来自不同遗传作图群体的控制小麦籽粒WSC含量的168个QTL位点进行图谱映射和元分析。结果发现,142个QTL定位区间与参考图谱有共有标记,其中92个QTL对籽粒WSC含量的表型变异具有增效效应,50个QTL具有减效效应。建立控制小麦籽粒WSC含量的QTL一致性图谱,获得16个"一致性"QTL(Meta quantitative trait loci,MQTL)位点及其连锁标记,MQTL置信区间最小达到0.77cM。  相似文献   

4.
两种供氮水平下玉米穗部性状的QTL定位   总被引:4,自引:0,他引:4  
以优良杂交种豫玉22两亲本Z3和87-1为基础构建一套F8家系的重组自交系群体为研究材料,在正常供氮和低氮两种氮水平下进行田间试验,利用复合区间作图法对玉米穗长、穗行数、行粒数、百粒重和单穗粒数进行QTL定位分析。两种氮水平下共定位到24个玉米穗部性状的QTL位点,其中正常供氮条件下定位到13个QTL,低氮水平下定位到11个QTL,集中分布在第1(8个QTL)、第5(6个QTL)和第8(5个QTL)染色体上。两种氮水平下共位或紧密连锁的QTL位点较少,表明玉米穗部性状在低氮水平下的遗传机制发生很大改变。研究发现,第1染色体umc1122/bnlg1556位点是一个控制低氮水平下玉米单穗粒数的主效QTL,单个QTL可解释19.7%的表型变异,该位点还同时影响低氮水平下玉米穗长、穗行数和百粒重的表型。与前人定位结果比较发现,该位点所在的染色体区域是一个产量及氮效率相关性状的QTL富集区,对此位点附近进行相关分子标记辅助选择,可能会在玉米氮高效分子育种上有所突破。  相似文献   

5.
小麦穗部性状特别是穗顶部、基部结实性对穗粒数的建成及产量具有重要影响。为给QTL精细定位、基因克隆及穗部性状分子标记的开发和辅助选择奠定基础,本研究以扬麦17与宁麦18杂交获得的310个F2群体及其衍生的F2:3家系为材料,构建了一个由215个SSR标记组成的全长为1 717 cM的遗传连锁图谱,共覆盖19条染色体(1D和6A未涉及),标记间平均距离为7.99 cM,并对6个穗部性状进行QTL定位。利用复合区间作图法共检测出22个QTL,分布在1A、1B、2B、2D、3B、3D、4B、5A、5B和7A染色体上。其中,穗顶部结实粒数QTL有7个,穗基部结实粒数QTL有2个,穗长QTL有5个,总小穗数QTL有3个,不育小穗数QTL有2个,穗粒数QTL有3个,表型贡献率为2.56%~13.66%。控制穗顶部和基部结实粒数QTL的增效基因来源于宁麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   

6.
亚麻是一种重要的经济作物,在食品业、纺织业、医疗保健、畜牧业等领域均具有重要价值。多数亚麻性状都是由数量性状位点(quantitative trait loci, QTL)控制,因此QTL定位无疑有助于加快亚麻育种进程、提升亚麻产品品质、增强作物抗逆性等。目前作物QTL定位方法分为两大类,即基于遗传连锁图谱的传统QTL定位方法以及基于连锁不平衡原理的全基因组关联分析(genome-wide association study, GWAS)。文章总结了当前亚麻遗传图谱的构建情况,以及基于传统QTL定位、GWAS分析定位的QTL研究进展,以期为亚麻其他重要性状QTL定位分析和分子辅助育种提供参考。  相似文献   

7.
小麦产量性状的QTL分析   总被引:14,自引:2,他引:14  
为寻找更多与小麦产量性状相关的数量性状位点(QTL),利用江苏地方品种望水白与墨西哥小麦品种Alondra杂交构建的重组自交系群体(104个家系),在3个试验环境下进行了单株有效穗数、主穗粒数、单穗粒数和千粒重4个性状的QTL分析,结果在5A染色体上检测到与单株有效穗数相关、可以解释10.3%~18.8%表型变异的QTL1个;检测到与主穗粒数相关的QTL8个,分别位于染色体1B、1D、3B、4A、5D、6B上和连锁群4上(未知具体染色体归属),单个QTL可以解释9.9%~19.9%的表型变异;检测到与单穗粒数相关的QTL11个,分别位于染色体1B、1D、2A、2B、3B、4A、5D、6B和7A上,单个QTL可解释7.5%~43.4%的表型变异;检测到与千粒重相关的QTL5个,分别位于2A、2B、3B、4D和7A染色体上,单个QTL可解释9.6%~25.7%的表型变异。获得的QTL可以用于分子标记辅助育种。  相似文献   

8.
小麦分蘖数和单株穗数QTL定位及上位性分析   总被引:1,自引:0,他引:1  
为了明确小麦分蘖性状和单株穗数的遗传基础,以中国春(母本)和兰考大粒(父本)杂交获得的F2群体为作图群体,构建了含169个分子标记的遗传连锁图谱。将F2:3家系分别种植于陕西乾县、岐山和杨凌三地,利用完备区间作图方法对小麦冬前分蘖、春季分蘖和单株穗数进行多环境联合QTL分析,共检测到21个相关的加性QTL位点。其中,6个冬前分蘖QTL位于2A、2D、5D和7A染色体上,单个QTL可解释1.38%~6.73%的表型变异;7个春季分蘖QTL位于1A、2D、4B、5D、7A和7D染色体上,单个QTL可解释1.97%~32.60%的表型变异;8个单株穗数QTL位于1A、2B、2D和4B染色体上,单个QTL可解释2.29%~41.21%的表型变异。共检测到30对加性×加性上位性QTL。其中,控制冬前分蘖的为1对,可解释21%的表型变异;控制春季分蘖的为20对,可解释0.59%~48.7%的表型变异;控制单株穗数的为9对,可解释0.08%~22.18%的表型变异。控制冬前分蘖、春季分蘖和单株穗数的加性QTL存在差异,同一QTL在不同性状中的遗传贡献率也不同;基因间上位性效应以春季分蘖最大,单株穗数次之,冬前分蘖最小,且不同性状涉及的QTL位点具有差异。小麦分蘖遗传主要受加性效应控制,本研究初步定位到的一些重要QTL可为进一步精细定位、基因挖掘和高产育种的分子标记辅助选择提供依据。  相似文献   

9.
为了解控制小麦穗颈长的遗传位点,以西藏半野生小麦Q1028与郑麦9023(ZM9023)杂交后所构建的重组自交系(RIL)群体为材料,于2011、2012、2013和2014年分别在四川农业大学温江试验田种植,对其穗颈长进行遗传分析。结果表明,群体内穗颈长呈正态分布,符合数量遗传的特点。在四年环境中,总共检测到4个控制穗颈长的QTL位点,分布于3A、5A和6B染色体上,贡献率为7.55%~11.44%。位于6B染色上wPt-669607~wPt-5480标记之间的QTL位点在三年环境中被稳定检测到。同时,四年环境下穗颈长与株高都呈显著正相关(P0.01),而仅在一年环境中与穗长呈显著正相关(P0.01),与小穗数、穗粒数、穗粒重、千粒重、粒长和粒宽无显著相关性(P0.05)。本研究鉴定的QTL为分子标记辅助选育穗茎长度适中的小麦品系及其进一步的精细定位奠定了基础。  相似文献   

10.
为了发掘更多控制小麦旗叶大小及穗部相关性状的QTL,以兰考906和小偃81创制的133个F6~F7重组自交系为试验材料,在6个环境下利用SSR标记对旗叶大小及穗部相关性状进行QTL定位。结果表明,有202对SSR标记被用于构建遗传连锁图谱,图谱覆盖小麦21条染色体,全长1 678.93cM,标记间平均距离8.30cM。采用完备区间作图法共检测到30个QTL,分布在1B、2A、3D、4A、4B、4D、5D、6A、6B、6D和7D染色体上。其中,旗叶宽QTL有7个,穗长QTL有9个,小穗数QTL有5个,穗粒数QTL有5个,小穗着生密度QTL有4个,不同环境下单个QTL可解释的表型变异率为4.94%~23.14%,有14个QTL的表型贡献率大于10%,有8个QTL可在2个或2个以上环境中被检测到。其中,Qflw-4A在3个环境中被检测到,贡献率为10.13%~20.77%,是控制旗叶宽的稳定主效QTL;Qsl-4D.2在4个环境中被检测到,贡献率为12.58%~23.14%,是控制穗长的稳定主效QTL;Qker-5D在2个环境中被检测到,贡献率为11.44%~14.32%,是控制穗粒数的稳定主效QTL。这3个稳定主效QTL可作为改良叶宽和增加穗粒数的功能QTL作进一步研究。  相似文献   

11.
Major efforts in wheat research are being made to improve the yield and quality of wheat. Loaf volume (Lv) is the main quality parameter deciding the bread making potential of wheat. To genetically dissect quantitative trait loci (QTLs) for Lv, a Recombinant Inbred Line (RIL) population (F8) was developed from a cross between two Indian wheat varieties “HI 977” and “HD 2329”. A total of 914 SSR and 100 ISSR primers were used for molecular analysis and the genetic map comprising 19 chromosomes was constructed with 202 SSR markers and 2 HMW glutenin subunit loci: Glu-B1 and Glu-D1. The phenotypic data were collected from six environments including three different agro-climatic zones for 2 consecutive years. Dissection of Lv through AMMI model revealed significant G×E variance for the trait. QTL analysis was performed using composite interval mapping. A total of 30 QTLs for Lv were detected and significant QTLs were identified on 6B and 6D chromosomes; 1B, 1D, 2A, 3A, 5B and 5D also contributed genetically to Lv. Association between 6B and 6D QTLs and variable expression of gliadins on group 6 chromosomes were discussed. QTLs detected in this study were compared with other QTL analysis in wheat.  相似文献   

12.
利用90K基因芯片进行小麦株高QTL分析   总被引:1,自引:0,他引:1  
为给小麦株高标记辅助选择提供可供选择的分子标记,并进一步对株高QTL进行精细定位及相关基因克隆,以小麦骨干亲本周8425B和小偃81衍生的包含102个家系的RIL群体(F_8)为材料,利用90K芯片标记构建高密度遗传图谱,在3个环境下对株高进行QTL检测。结果表明,所构建的图谱含有9 290个SNP标记,覆盖了小麦21条染色体的63个连锁群,图谱总长3 894.64cM,平均标记密度为0.42cM。共检测到9个控制株高的QTL,分布于1B、4A、4D、6B、7A、7B和7D染色体上,变异解释率为2.23%~16.25%。QPh.nafu.4D、QPh.nafu.4A、QPh.nafu.1B-2与前人定位到的位置相同或相近。QPh.nafu.7A具有较大的LOD值(8.17)和变异解释率(14.69%),为主效QTL。QPh.nafu.6B、QPh.nafu.7B-1、QPh.nafu.7B-2均能在多个环境下使用多种QTL检测方法定位到,可能为新的较稳定的控制株高的QTL。  相似文献   

13.
为了发掘新的穗部性状和株高QTL,利用扬麦17与扬麦18杂交后代206个单株组成的F2群体,构建了一个由141个SSR标记组成的全长1005.1cM的遗传图谱。该图谱包括26个连锁群,覆盖15条染色体,标记间平均距离为7.03cM。结合F2和F2:3群体的表型数据,对穗部性状和株高进行QTL分析,利用复合区间作图法检测出15个QTL,分布在2B、2D、4B、5A、5B和7A染色体上,其中4个QTL能够同时在两个世代被检测到,表型变异解释率为1.93%~20.78%,穗长QTLQSl-YY-2D、QSl-YY-5A和株高QTLQPh-YY-4B的贡献率超过10%。根据6VS特异性标记鉴定和表型调查结果,推测扬麦18的6VS上携带有增加穗长和穗粒数的基因,且为部分显性。2B染色体上总小穗数和5B染色体上穗粒数、穗基部结实粒数的QTL增效等位基因及2D、4B染色体上降低株高的QTL增效等位基因均来自扬麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   

14.
为给小麦穗部性状标记辅助选择提供可供选择的分子标记,并进一步对小麦穗部相关性状QTL进行精细定位及相关基因克隆,利用普通小麦Heyne×Lakin杂交F2代单粒传获得的145个F6代重组自交系(recombinant inbred line,RIL)群体,构建了含有2 210个标记(2 068个SNP标记和142个SSR标记)的总长度为2 139.35cM的遗传连锁图谱,并利用该图谱对小麦穗部性状(穗长、小穗数、穗密度)进行了QTL分析。结果表明,共检测出16个加性QTL,其中,与穗长相关的QTL有6个,分布在2A、2D、3B、4D、5A和7D染色体上,可解释表型变异7.58%~15.94%;与小穗数相关的QTL有4个,分布在1A、4A和7D染色体上,可解释表型变异7.28%~14.78%;与穗密度相关的QTL有6个,位于4D、5A和6B染色体上,可解释表型变异5.60%~20.06%。  相似文献   

15.
开花期对玉米适应不同环境具有决定性作用,是重要的育种目标,对玉米开花期进行QTL定位是进行花期性状改良的基础工作。以玉米自交系黄早四和1462为亲本构建的F2:3群体为材料,结合高密度SNP标记对玉米抽雄期和散粉期进行QTL定位。结果表明,F2:3群体的抽雄期和散粉期呈正态分布,且两性状之间呈极显著相关。利用WinQTLcart 2.5软件的复合区间作图法共检测5个控制抽雄期的QTL,分别位于3、5、6、7、9号染色体上,贡献率在6.19%~26.39%;同时检测到4个控制散粉期的QTL,位于3、5、6、7号染色体上,贡献率7.48%~28.28%,这些QTL的基因作用方式以部分显性和超显性为主。共计发现3个主效QTL(贡献率超过10%),分别位于3号和6号染色体上。利用两个亲本的V6时期的茎尖进行转录分析,在主效QTL置信区间内共发现21个差异表达基因,其中包含可能控制玉米花期的候选基因。  相似文献   

16.
为挖掘控制小麦幼苗性状与旗叶性状的QTL,并探讨两者的遗传基础,以京冬8号和矮抗58构建的RIL群体(207个家系)为材料,田间试验测定旗叶相关性状,水培试验测定幼苗期相关性状,通过完备区间作图对这些性状进行QTL研究。结果共检测到10个控制旗叶性状的QTL,单个QTL可解释1.98%~9.89%的表型变异,其中有6个QTL为主效QTL,分别位于1A、4D和5D染色体上;共检测到22个控制幼苗性状的QTL,单个QTL可解释1.14%~10.52%的表型变异,仅有2个QTL为主效QTL,分别位于1A和4D染色体上。除3D染色体上控制幼苗根长的QTL以及5D染色体上控制旗叶面积和旗叶宽的QTL表现为部分显性效应外,与其他性状有关的QTL均表现为超显性效应。1A、2D、4D、5A、5D和7A染色体上的分子标记存在多效性,其中2D(wmc170)和4D(barc308)染色体上与幼苗性状QTL紧密连锁的分子标记(wmc170和barc308)也与旗叶性状QTL紧密连锁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号