首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Fishing can drive changes in important phenotypic traits through plastic and evolutionary pathways. Size‐selective harvest is a primary driver of such trait change, has received much attention in the literature and is now commonly considered in fisheries management. The potential for selection on behavioural traits has received less study, but mounting evidence suggests that aggression, foraging behaviour and linked traits can also be affected by fishing. An important phenomenon that has received much less attention is selection on reproductive phenology (i.e., the timing of breeding). The potential for this type of “temporal selection” is widespread because there is often substantial variability in reproductive phenology within fish populations, and fisheries management strategies or fishermen's behaviours can cause fishing effort to vary greatly over time. For example, seasonal closures may expose only early or late breeding individuals to harvest as observed in a range of marine and freshwater fisheries. Such selection may induce evolutionary responses in phenological traits, but can also have demographic impacts such as shortened breeding seasons and reduced phenotypic diversity. These changes can in turn influence productivity, reduce the efficacy of management, exacerbate ongoing climate‐driven changes in phenology and reduce resilience to environmental change. In this essay, we describe how fisheries management can cause temporal variability in harvest, and describe the types of selection on temporal traits that can result. We then summarize the likely biological consequences of temporally selective fishing on populations and population complexes and conclude by identifying areas for future research.  相似文献   

2.
3.
4.
Abstract Murray cod, Maccullochella peelii (Mitchell) is an iconic Australian species endemic to the Murray‐Darling Basin (MDB) of inland south‐eastern Australia. Murray cod has been a valuable food source and supported a large commercial fishery throughout much of the 20th century. Over‐fishing and habitat destruction have resulted in significant declines in Murray cod populations throughout much of its range. Since the early 1980s, large numbers of Murray cod have been stocked into waterways to support both recreational fishing and conservation efforts. In this study, the likely impacts of past and current stocking practices on genetic diversity of Murray cod were modelled and new strategies to maximise genetic diversity in stocked populations are explored. The results suggest that a large, well‐managed breeding and stocking programme could help maintain genetic diversity of Murray cod across the MDB. In catchments within the MDB where the effective population size is very small, a well‐designed stocking programme, following strict guidelines for numbers of families reared and number of individuals maintained per family, could increase genetic diversity in a few generations.  相似文献   

5.
The demographic structure of populations is affected by life history strategies and how these interact with natural and anthropogenic factors such as exploitation, climate change, and biotic interactions. Previous work suggests that the mean size and age of some North American populations of Chinook salmon (Oncorhynchus tshawytscha, Salmonidae) are declining. These trends are of concern because Chinook salmon are highly valued commercially for their exceptional size and because the loss of the largest and oldest individuals may lead to reduced population productivity. Using long‐term data from wild and hatchery populations, we quantified changes in the demographic structure of Chinook salmon populations over the past four decades across the Northeast Pacific Ocean, from California through western Alaska. Our results show that wild and hatchery fish are becoming smaller and younger throughout most of the Pacific coast. Proportions of older age classes have decreased over time in most regions. Simultaneously, the length‐at‐age of older fish has declined while the length‐at‐age of younger fish has typically increased. However, negative size trends of older ages were weak or non‐existent at the southern end of the range. While it remains to be explored whether these trends are caused by changes in climate, fishing practices or species interactions such as predation, our qualitative review of the potential causes of demographic change suggests that selective removal of large fish has likely contributed to the apparent widespread declines in average body sizes.  相似文献   

6.
A Bayesian population modelling tool integrating separable virtual population analysis, per‐recruit models and age‐structured demographic analysis was developed for the bigeye thresher Alopias superciliosus (Lowe) population in an area subset of the western North Pacific. The mortality rates for years 1989–2016 were estimated, various biological reference points and associated risks of decline were also estimated, and alternative harvest strategies for the stock were evaluated. Estimates of the posterior mean of fishing mortality for bigeye thresher shark suggest fishing pressure has been high in recent years (2011–2016). The estimated population growth rate (λ) (without fishing) obtained from age‐structured demographic model was relatively low (λ = 1.01 per year; 95% confidence intervals of 1.00 and 1.03 per year). Risk analyses revealed that only low levels of fishing pressure (10% of the current fishing pressure) over a wide range of ages could maintain a relatively low risk of population decline for bigeye threshers. Sensitivity testing indicated that the model is robust to prior specification. The developed framework could be used as an assessment tool to evaluate the risk of decline for other widely distributed pelagic shark species where insufficient catch and effort data are available.  相似文献   

7.
8.
Population diversity is a mechanism for resilience and has been identified as a critical issue for fisheries management, but restoration ecologists lack evidence for specific habitat features or processes that promote phenotypic diversity. Since habitat complexity may affect population diversity, it is important to understand how population diversity is partitioned across landscapes and among populations. In this study, we examined life history diversity based on size distributions of juvenile Central Valley Chinook salmon (Oncorhynchus tshawytscha) within the Yolo Bypass, a remnant transitional habitat from floodplain to tidal sloughs in the upper San Francisco Estuary (SFE). We used a generalized least squares model with an autoregressive (AR1) correlation structure to describe the distribution of variation in fish size from 1998 to 2014, and tested the effect of two possible drivers of the observed variation: (i) environmental/seasonal drivers within the Yolo Bypass, and (ii) the juvenile Chinook source population within the Sacramento River and northern SFE. We found that the duration of floodplain inundation, water temperature variation, season, and sampling effort influenced the observed time‐specific size distribution of juvenile Chinook salmon in the Yolo Bypass. Given the lack of seasonally inundated habitat and low thermal heterogeneity in the adjacent Sacramento River, these drivers of juvenile size diversification are primarily available to salmon utilizing the Yolo Bypass. Therefore, enhancement of river floodplain‐tidal slough complexes and inundation regimes may support the resilience of imperiled Central Valley Chinook salmon.  相似文献   

9.
Abstract – Investigating the influence of evolutionary forces on the genetic structure and genetic diversity remains a major challenge. Yet, it is of considerable interest for conservation and management of a species. This study investigates the influence of life‐history and landscape features, such as altitude, connectivity and habitat size, on genetic diversity and genetic structure of brown trout (Salmo trutta L.) with stream‐resident, lake‐dwelling and sea‐migrating life‐history in two river systems in northern Sweden. Using regression tree analysis including ecological and landscape characteristics, we show that life history is the most important variable explaining genetic diversity and population differentiation. Sea‐migrating populations show high diversity and low differentiation, and lake‐ and stream‐resident populations show low diversity and high population differentiation, among all samples. No overall genetic correlation with geographical distance was noted; however, among sea‐migrating populations within the River Vindelälven drainage, this pattern was observed. This study illustrates that life‐history and landscape features help to explain genetic structure and genetic variation. The information is important for conservation and management actions, such as fisheries regulations, habitat restorations, stocking of hatchery fish, defining management units and introducing genetic monitoring programmes.  相似文献   

10.
  1. Understanding the interactions among demographic parameters, mating system and population dynamics is key to predict the response of populations to global change. The Mediterranean red coral is a precious octocoral suffering from population decline due to overfishing and warming‐driven mass mortality events.
  2. While the demographic consequences of these two pressures are well characterized, little is known regarding their impact on population dynamics and evolution of red coral populations. The main objective of this study was to fill this gap focusing more particularly on mating pattern and genetic drift.
  3. Combining sibship and progeny arrays analyses, a genetic characterization of the red coral mating system was conducted. In addition, a synchronic approach was developed comparing mating patterns in two populations with contrasting demographic patterns: a pristine‐like population and a declining population.
  4. The results show that polyandry is likely to be the norm in red coral. The similar patterns of genetic diversity between adults and larvae combined with the lack of differential reproductive success among putative fathers did not support significant sweepstakes effects during larval production. While instantaneous biparental inbreeding was detected, no long‐term inbreeding was observed even in the declining population. Mating patterns and effective population sizes in the two populations were not statistically different. Nevertheless, a trend towards a slightly higher inbreeding and a lower number of breeders was observed in the declining population.
  5. Accordingly, we hypothesized that an increase in male gamete dispersal may buffer the increase of genetic drift expected in the declining population. This feedback between demographic decline and reproductive pattern may potentially take part in the long‐term persistence of red coral populations. However, the negative trend reported in the declining population unambiguously supports the need to maintain high densities of reproductive colonies to the functioning of red coral populations.
  相似文献   

11.
Effective management of fisheries depends on the selectivity of different fishing methods, control of fishing effort and the life history and mating system of the target species. For sex‐changing species, it is unclear how the truncation of age‐structure or selection of specific size or age classes (by fishing for specific markets) affects population dynamics. We specifically address the consequences of plate‐sized selectivity, whereby submature, “plate‐sized” fish are preferred in the live reef food fish trade. We use an age‐structured model to investigate the decline and recovery of populations fished with three different selectivity scenarios (asymptotic, dome‐shaped and plate‐sized) applied to two sexual systems (female‐first hermaphroditism and gonochorism). We parameterized our model with life‐history data from Brown‐marbled grouper (Epinephelus fuscoguttatus) and Napoleon fish (Cheilinus undulatus). “Plate‐sized” selectivity had the greatest negative effect on population trajectories, assuming accumulated fishing effort across ages was equal, while the relative effect of fishing on biomass was greatest with low natural mortality. Fishing such sex‐changing species before maturation decreased egg production (and the spawning potential ratio) in two ways: average individual size decreased and, assuming plasticity, females became males at a smaller size. Somatic growth rate affected biomass if selectivity was based on size at age because in slow growers, a smaller proportion of total biomass was vulnerable to fishing. We recommend fisheries avoid taking individuals near their maturation age, regardless of mating system, unless catch is tightly controlled. We also discuss the implications of fishing post‐settlement individuals on population dynamics and offer practical management recommendations.  相似文献   

12.
Abstract – Ecological models for stream fish range in scale from individual fish to entire populations. They have been used to assess habitat quality and to predict the demographic and genetic responses to management or disturbance. In this paper, we conduct the first comprehensive review and synthesis of the vast body of modelling literature on the brown trout, Salmo trutta L., with the aim of developing the framework for a demogenetic model, i.e., a model integrating both population dynamics and genetics. We use a bibliometric literature review to identify two main categories of models: population ecology (including population dynamics and population genetics) and population distribution (including habitat–hydraulic and spatial distribution). We assess how these models have previously been applied to stream fish, particularly brown trout, and how recent models have begun to integrate them to address two key management and conservation questions: (i) How can we predict fish population responses to management intervention? and (ii) How is the genetic structure of fish populations influenced by landscape characteristics? Because salmonid populations tend to show watershed scale variation in both demographic and genetic traits, we propose that models combining demographic, genetic and spatial data are promising tools for improving their management and conservation. We conclude with a framework for an individual‐based, spatially explicit demogenetic model that we will apply to stream‐dwelling brown trout populations in the near future.  相似文献   

13.
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries‐induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life‐history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.  相似文献   

14.
Analysing how fish populations and their ecological communities respond to perturbations such as fishing and environmental variation is crucial to fisheries science. Researchers often predict fish population dynamics using species‐level life‐history parameters that are treated as fixed over time, while ignoring the impact of intraspecific variation on ecosystem dynamics. However, there is increasing recognition of the need to include processes operating at ecosystem levels (changes in drivers of productivity) while also accounting for variation over space, time and among individuals. To address similar challenges, community ecologists studying plants, insects and other taxa increasingly measure phenotypic characteristics of individual animals that affect fitness or ecological function (termed “functional traits”). Here, we review the history of trait‐based methods in fish and other taxa, and argue that fisheries science could see benefits by integrating trait‐based approaches within existing fisheries analyses. We argue that measuring and modelling functional traits can improve estimates of population and community dynamics, and rapidly detect responses to fishing and environmental drivers. We support this claim using three concrete examples: how trait‐based approaches could account for time‐varying parameters in population models; improve fisheries management and harvest control rules; and inform size‐based models of marine communities. We then present a step‐by‐step primer for how trait‐based methods could be adapted to complement existing models and analyses in fisheries science. Finally, we call for the creation and expansion of publicly available trait databases to facilitate adapting trait‐based methods in fisheries science, to complement existing public databases of life‐history parameters for marine organisms.  相似文献   

15.
Electrofishing techniques are widely used for the estimation of the size of stream‐dwelling fish populations for both fishery management and scientific study. In contrast to multiple pass, population depletion methods, single‐pass catch‐per‐unit‐effort (CPUE) methods are less time‐consuming and labour‐intensive. A possible issue with the commonly used fixed total time CPUE protocol is that it does not differentiate between the time spent actively fishing and the time incurred while not actively fishing (e.g. removing fish from nets and navigating the site). This issue is likely related to fish density. This study compared two methods of CPUE electrofishing and tested the hypothesis that time spent handling fish and navigating a site can be a source of error in the commonly used fixed total time electrofishing method. Seventy‐one sites were sampled across three subcatchments in the Foyle catchment in Northern Ireland. We found a difference in the catch per unit time between the two methods and that this difference increased with fish density. The fixed‐time CPUE method also failed to detect a species presence in low‐density sites.  相似文献   

16.
17.
为掌握江苏省重要湖泊湖鲚(Coilia nasus taihuensis)群体的遗传多样性和遗传结构,利用线粒体控制区(D-loop)全序列分析了6个湖泊(太湖、滆湖、高邮湖、白马湖、洪泽湖和骆马湖)湖鲚野生群体的遗传多样性水平和群体分化情况。结果表明,6个群体共214尾样本的D-loop序列中,共发现103个变异位点,92种单倍型。6个群体的单倍型多样性为0.726~0.951,核苷酸多样性为0.00552~0.01036,6个群体整体的单倍型和核苷酸多样性分别为0.857和0.00729,表明湖鲚群体的遗传多样性较高,且符合高单倍型多样性和低核苷酸多样性特点。分子方差分析(AMOVA)结果表明,群体间变异百分比为6.20%,群体内变异百分比为93.80%,说明遗传变异主要来自群体内部。群体总的遗传分化系数(Fst)为0.06199(P<0.01),两两群体间的Fst显示,滆湖群体与其他群体间存在极显著的遗传分化(P<0.001),而其他群体间无显著分化(P>0.05)。单倍型分子系统进化树和网络进化图显示,6个群体的单倍型形成了2个谱系,但谱系组成与群体地理分布无相关性。中性检验分析结果显示,湖鲚群体进化过程中经历过种群扩张,扩张时间大约发生在0.089~0.160百万年前。研究结果表明,湖鲚群体具有较高的遗传多样性,滆湖群体与其他群体具有极显著的遗传分化,且拥有多个独享单倍型,应将滆湖群体单独作为一个管理单位,其他5个群体作为一个整体进行管理和利用。  相似文献   

18.
为研究野生与养殖大黄鱼(Larimichthys crocea)群体的遗传多样性,对大黄鱼8个野生群体及6个养殖群体共336个样本的线粒体COⅠ基因部分序列进行了扩增和测序分析。实验最终获得序列片段长621 bp,总变异位点38个,简约信息位点23个,单变异位点15个,其中野生群体包含38个变异位点,占总变异的100%,养殖群体包含8个变异位点,占总变异的21.05%。在所有样本中共检测出单倍型34个,单倍型多样性为0.587,核苷酸多样性为0.00194,野生及养殖群体单倍型多样性指数分别为0.714~0.952、0.000~0.581。大黄鱼养殖与野生两个组群间的遗传分化指数为0.04982,占总变异的4.98%,差异极显著(P0.01),组群间群体间的变异占1.46%(P0.05),群体内的变异占93.56%(P0.01)。以上结果表明,大黄鱼的遗传变异主要来自于群体内,养殖群体的遗传多样性显著低于野生群体,两者的遗传多样性程度均处于较低水平,养殖群体间或野生群体间不存在显著的遗传分化,而养殖与野生两大组群间存在着显著的遗传分化。此外,通过对群体遗传结构及进化树的分析表明,东、黄海大黄鱼应属于同一地理种群,但两者间存在较低程度的遗传分化现象,黄海的大黄鱼群体遗传多样性高于东海群体。本研究可为大黄鱼种质资源的保护和恢复提供理论依据。  相似文献   

19.
为了解中国沿海缘边银鲈(Gerres limbatus)的遗传背景,分析了9个地理群体140条样本线粒体细胞色素氧化酶Ⅰ(cytochrome oxidase subunitⅠ,COⅠ)基因5′端652 bp序列。结果发现14个变异位点,13个单倍型,其中有9个独有单倍型和4个共享单倍型,整体单倍型和核苷酸多样性都较低(Hd=0.276±0.050,π=0.0005±0.0001)。琼州海峡以东海域的遗传多样性(Hd=0.338~0.456,π=0.0006~0.0011)高于琼州海峡以西北部湾海区(Hd=0~0.295,π=0~0.0005)。单倍型网络图未出现明显谱系结构和地理结构。群体遗传分化系数Fst显示,硇洲群体与其他群体间出现不显著的中低度遗传分化(Fst=0.0773~0.1696,P>0.05),其他群体间分化不明显(Fst=-0.0415~0.0612,P>0.05),总体上群体间分化程度都不高。AMOVA分析显示,遗传变异绝大部分(95%以上)来源于群体内。中性检验结果显示,群体总体的Tajima’s D(-2.2549)和Fu’s Fs(-16.4725)结果均为显著性负值(P<0.01),核苷酸错配图呈现较为明显单峰,单倍型网络图呈典型星状结构,表明缘边银鲈历史上存在过种群扩张,扩张时期约为距今0.1304~0.0435百万年。由于总体单倍型多样性小于0.5,核苷酸多样性小于0.005,推测中国缘边银鲈种群曾经历过较为严重的瓶颈效应。宁德、硇洲群体的核苷酸多样性相对较高,应优先保护。北部湾各群体遗传多样性极低,需要采取措施避免遗传多样性下降。  相似文献   

20.
Identifying rates of change in the abundance of sea cucumbers under differing management regimes is fundamental to estimating commercial yields, identifying ecological interactions and facilitating management. Here, we review the status of sea cucumber stocks from a range of Pacific Island countries (Samoa, Tonga, Palau, Fiji and Papua New Guinea), some of which have had a moratorium on exports for up to a decade. We use a time‐series approach to look at variation in sea cucumber presence, coverage and density from survey and re‐survey data. Results give an appreciation of variation between ‘high’ status (less impacted) and depleted stocks. Survey data show marked declines in coverage and abundance as a result of artisanal fishing activity, and although species groups were not lost at a country level, local extirpation and range restriction was noted. Resilience and ‘recovery’ following cessation of fishing varied greatly, both among locations and among the species targeted. Worryingly, even after extended periods of moratorium, the density of some species was markedly low. In many cases, the densities were too low for commercial fishing, and may be at a level where the effective population size is constrained due to ‘Allee’ affects. From these results, we suggest that management regimes presently employed are generally not well aligned with the level of response to fishing mortality that can be expected from sea cucumber stocks. New adaptive, precautionary approaches to management are suggested, which would allow more timely interventions to be made, while refined information on stock dynamics is sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号