首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
尿素水解中NH3对根系的抑制作用   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了石灰性土壤和低钾酸性土壤上由于尿素水解引起pH升高,产生NH3对作物生长的影响,特别是对根系发育的有害作用。盆栽试验表明,石灰性土壤上表施尿素200ppmN后播种小麦,抑制了种子的生根和发芽。分蘖末期追施尿素200 ppmN,在10天中小麦根系干物质的积累量与对照相比反而有减少趋势,在低钾的酸性土壤上也观察到同样的现象。受尿素伤害的植株含钾低,并出现类似缺钾的症状。用一定量的NH3处理植株,其体内K+和游离氨基酸出现大量的外溢。气态NH3为5微克/厘米3时,水稻、小麦根系就出现明显的受害症状。在低浓度,短时间处理后取消NH3的作用,则受害植株尚能恢复生长。尿素施入后盖土再播种,种、肥分隔条施以及尿素掺泥炭混施等措施都可防止NH3逸失,减缓对作物根系的有害作用。  相似文献   

2.
升高CO2浓度能够促进作物的光合作用,提高作物的生物量和产量,但关于CO2与NH+4/NO-3比及其交互作用对作物影响的研究较少,为探索番茄幼苗生长发育对CO2浓度升高的响应是否对NH+4/NO-3配比有较强的依赖关系,本试验在营养液栽培条件下,以番茄(Lycopersicun esculentum Mill)为试材,研究正常大气CO2浓度(360 μL/L)和倍增CO2浓度(720 μL/L)与不同NH+4/NO-3配比的交互作用对番茄幼苗生长的影响。结果表明:CO2浓度升高提高了低NH+4/NO-3比例处理中番茄叶片的光合速率和水分利用率,提高幅度随NH+4/NO-3比例的降低而增强,光合速率增强最大达55%。在同一CO2浓度处理下净光合速率与水分利用率均随NH+4/NO-3比例的增加而显著降低。这说明CO2浓度升高对番茄幼苗生长发育的促进作用随NH+4/NO-3比例的降低而提高,但并没有减弱全NH+4-N处理中番茄幼苗的受毒害作用。综上所述,CO2浓度升高能提高植物生产的节水能力和水分生产力;水培条件下,NO-3-N是最适合番茄幼苗生长发育的氮源,其它NH+4/NO-3比例对番茄幼苗的生长发育有一定的抑制作用,仅以NH+4-N作氮源则番茄幼苗很难生长。  相似文献   

3.
徐淮地区石灰性土壤磷素固定的研究   总被引:13,自引:0,他引:13  
用化学和物理化学的方法研究了纯CaCO3固磷机制和特性.结果表明,随着起始磷浓度从低(0-10ppm P)到高(>10ppm P)变化,CaCO3与磷先后发生吸附、沉淀反应,CaCO3对磷具有很强的固定作用.徐淮地区石灰性土壤(黄潮土)固磷机制和特性的研究指出:起始磷浓度较低(0-200ppm P)时,以粘粒固定作用为主,CaCO3的沉淀怍用不明显;起始磷浓度较高(>200ppm P)时,则粘粒与CaCO3同时起作用,其中CaCO3和磷之间的沉淀反应非常突出.石灰性土壤的固磷量和固磷强度均较高.  相似文献   

4.
石灰化水稻土的形成   总被引:3,自引:0,他引:3       下载免费PDF全文
石灰化水稻土在我国约有400多万亩。CaCO3含量10—20%,CaCO3/MgCO3之比10—30不等。土壤板结,有石灰结核,有时形成石灰盘。土壤缺磷,少钾,有效态硼、锌、钼、锰也不足。是华南的一种中低产水稻土。石灰化水稻土中的钙主要来自年复一年的施用石灰和引灌含钙高的石灰岩溶洞水;石灰积聚的条件是土壤pH高,土壤CO2分压低和通透性不良;根据土壤中石灰含量和14C测定估算,石灰化水稻土的形成至少有360年以上的历史。石灰化水稻土施用石灰不起中和酸性的作用。所以,必须停施石灰,增施有机肥以根本上改良这种土壤,在未改良前应对症施肥以提高产量。  相似文献   

5.
蚯蚓粪的NH4+吸附等温线与DTA曲线特征   总被引:2,自引:1,他引:2  
本文研究了南宁三种饲料人工饲养的蚯蚓的蚯蚓粪(简称蚓粪)对NH4+的吸附等温线,并与武功的蚓粪作比较。蚓粪对NH4+的吸附一般大于土壤对NH4+的吸附,南宁蚓粪又大于武功蚓粪。蚓粪吸附NH4+量的多少与其中有机质含量有关,特别与其中中温放热反应的有机质(即易于分解的有机质)呈正相关。不同饲料组成对蚓粪吸NH4+等温线的参数影响不同。在Langmuir方程中与结合能常数有关的K值的次序为:纯牛粪>牛粪+烂橙果>牛粪+草菇培养基脚料而与最大吸附量有关的M值的次序为:牛粪+烂橙果>纯牛粪>牛粪+草菇培养基脚料而以K与真M的总的效应表示的b值的次序为:纯牛粪>牛粪+烂橙果>牛粪+草菇培养基脚料因此,牛粪不仅是一个良好的蚯蚓饲料,并且可使蚓粪具有良好的保NH4+力,成为一种有效的吸附剂。  相似文献   

6.
我国几种主要土壤胶体的NH4+吸附特征   总被引:8,自引:1,他引:8       下载免费PDF全文
谢鹏  蒋剑敏  熊毅 《土壤学报》1988,25(2):175-183
本文讨论我国几种主要土壤胶体的NH4+吸附特征。土壤胶体对NH4+的吸附符合两种表面Langmuir方程。土壤胶体对NH4+的结合能力强弱顺序是:黄棕壤>黑土、(土娄)土>红壤>砖红壤,而NH4+的解吸率大小顺序与此相反。Langmuir吸附方程参数K1与土壤胶体的粘粒矿物组成有关,并与土壤胶体对NH4+的相对偏好性(A值)呈正相关。Langmuir参数(M1+M2)与土壤胶体的CEC呈正相关,去有机质(OM.)前后△K1与△OM.呈反相关。去有机质可增加土壤胶体对NH4+的偏好性。土壤胶体的NH4+吸附和解吸特征决定于其组成和表面性质,并受有机无机复合作用的影响。永久电荷吸附位对NH4+的偏好性较强,而可变电荷吸附位则较弱。  相似文献   

7.
3 种挺水植物吸收水体NH4+、NO3-、H2PO4- 的动力学特征比较   总被引:3,自引:1,他引:2  
本文用动力学试验研究了具有景观价值的3 种挺水植物—— 水生美人蕉(Canna generalis)、细叶莎草(Cyperus papyrus)、紫芋(Colocasia tonoimo)对H2PO4-、NH4+、NO3- 的吸收特征及差异。试验结果表明: 3 种挺水植物吸收H2PO4- 时, 美人蕉的吸收速率最快, 且在较低离子浓度条件下也可以吸收该离子, 说明其具有嗜磷特性, 能够适应广范围浓度H2PO4- 环境; 吸收NO3- 时, 细叶莎草的速率最快, 但对低浓度NO3- 环境的适应能力较差, 美人蕉吸收NO3- 的特性与细叶莎草刚好相反; 吸收NH4+ 时, 细叶莎草的吸收速率最快, 且在低浓度NH4+ 环境下仍能吸收该离子, 而美人蕉的吸收速率最慢, 但能在低浓度NH4+ 环境下吸收该离子。说明不同植物对养分的吸收特性存在较大差异, 各自的污染水体修复适用范围也不同。美人蕉可用于各种浓度H2PO4- 污染的水体修复; 而NO3- 污染严重的水体最适宜用细叶莎草作先锋植物, 修复到一定程度后再种植美人蕉来维持水质; 细叶莎草在各种浓度NH4+ 污染的水体中均适用, NH4+ 污染较轻的水体也可用美人蕉修复。  相似文献   

8.
刘志光 《土壤》1986,18(3):168-168
G.Keerthisinghe等人在菲律宾主要植稻区的三种土壤上进行田间试验,考察NH4+-N肥的施用和作物氮素的吸收对土壤交换性NH4+和非交换性NH4+水平的影响。  相似文献   

9.
低硒土壤中75Se的形态转化   总被引:2,自引:0,他引:2  
李书鼎  张少兰 《土壤学报》1990,27(3):280-285
75SeO2水溶液分别按0.131ppm和1.631ppm比例处理暗棕色森林土。用这种土壤盆栽的小麦含Se分别为0.023ppm和0.493ppm。小麦收获之后,对土壤残留的75Se用不同的提取剂连续进行化学分级,75Se的各种形态按其占土壤总Se的百分比大小排序为:同位素交换态Se>NH4OH可提态Se>HNO3可提态Se>HCl可提态硒>水溶态Se>K2SO4可提态硒。土壤残留75Se主要以NaHSeO3同位素交换态存在,其量占土壤总硒28%,NH4OH可提态Se次之,占20%;水溶态Se较少,仅6-7%。以SeO3-2形式加入土壤的75Se被土壤紧密吸附。  相似文献   

10.
集约化畜禽生产过程中产生的有害气体NH3对环境酸化、土壤及地表水的污染等问题在公众与科学界都引起了极大的关注,西欧等发达国家对畜禽舍内NH3的排放测定、减排技术及测量方法等方面进行了大量研究。该文对畜禽舍NH3的产生及其影响因素进行了分析,对目前国内外有关畜禽舍NH3的减排与控制技术进行了综述。  相似文献   

11.
Abstract

Nitrogen (N) loss in the form of volatilized ammonia (NH3) is a considerable problem when ammonium (NH4 +) forming fertilizers are applied to calcareous or alkaline soils. The volatilization of NH3 from urea phosphate (UP) and urea (U) was studied on three selected soils (Hayhook SL, Laveen L, and Latene L) with the use of a laboratory aeration system. Urea phosphate and U were each applied at rates of 0, 50, 100, and 200 mg N kg‐1 soil, either to the surface dry or in solution or mixed with the soil. The volatilized NH3 was trapped in sulfuric acid, sampled periodically, and analyzed for N with the semi microkjeldahl distillation apparatus.

The highest N loss in the form of NH3 occurred when U was applied to Hayhook soil (neutral to acidic, coarse textured, and low CaCO3 content). However, UP applied to Hayhook soil resulted in the lowest NH3‐N loss. Less NH3‐N loss was found from U application to Laveen and Latene soils (fine textured with higher CaCO3 content) than with Hayhook soil. The general trend was higher N loss when a surface application was made, either dry or in solution, than when the fertilizer was mixed with the soil. This trend showed an increase in the amount of volatilized NH3 with increasing N application rates.

Generally, UP is a potential fertilizer for supplying N and phosphorus (P) as plant nutrients with a low potential for losses due to NH3 volatilization.  相似文献   

12.
氨挥发是稻田氮素损失的一个重要途径,有效控制稻田氨挥发对水稻增产减排具有重要意义。界面阻隔材料具有环境友好性和低成本的特点,可以作为一种截然不同的氨挥发减排方法。本研究比较分析了3种界面阻隔材料对水稻产量、氮肥利用率和氨挥发排放的影响,以期为水稻降本增效及减少环境污染提供技术支持。通过在稻田喷施表面分子膜材料和覆盖稻糠,比较了两种表面分子膜材料——聚乳酸(PLA)和卵磷脂(LEC)及稻糠(RB)施用后水稻产量及其构成、稻田田面水pH和铵态氮及硝态氮含量动态、稻田氨挥发及氮肥吸收利用的变化特征。结果表明, 3种界面阻隔材料均显著增加了水稻产量,与常规施肥对照(CKU,无添加界面阻隔材料)相比增幅分别为13.0%(RB)、21.0%(PLA)和24.1%(LEC)。增产主要是因为有效穗数的增加,其中RB和PLA处理与CKU处理差异达显著水平;每穗粒数和结实率均无显著差异。LEC处理显著提高了氮肥利用率(19.0%),但RB处理氮肥利用率显著低于CKU。与CKU处理相比,3种界面阻隔材料的添加减少12.3%~19.9%的氨挥发量。PLA处理氨挥发减排效果最佳,达显著水平;其次为LEC处理。氨挥发减排可能与界面阻隔材料添加导致的田面水pH、铵态氮浓度变化和土壤铵态氮含量的增加有关。与CKU处理相比,所有处理均增加了田面水铵态氮浓度,但同时降低了田面水pH,且在水稻分蘖期影响较明显。其中PLA处理还提高了土壤铵态氮含量。本研究表明,稻田施加界面阻隔材料是稻田氨挥发减排以及增产增效的另一种可行的技术途径。  相似文献   

13.
Ammonia losses after surface application of fresh chicken slurry (15% solids) and anaer-obically stored chicken slurry (10% solids) to a silty clay soil (pH 6.9) at a rate equivalent to 34 m3 ha?1 were studied in a laboratory incubation experiment. Total NH3-N losses amounted to 29% of the initial uric acid-N+urea-N+NH+4-N content of the fresh slurry and 28% of the initial NH+4-N content of the anaerobic slurry. Peak rates of ammonia volatilization took place between 24 h and 48 h after application of the fresh slurry and within 5 h of application of the anaerobic slurry. The addition of CaCl2 at a rate of 36 mg Ca g?1 (dry wt) slurry decreased peak rates of ammonia volatilization from the fresh slurry by 73% and total losses by 37%. The decrease in total ammonia losses through CaCl2 addition to the anaerobic slurry was only 8 %. The addition of CaCl2 decreased CO2 output from both slurries through precipitation of HCO3? as CaCO3, thereby removing a source of alkalinity from the solution. The failure of the CaCl2 addition to decrease significantly ammonia losses from the anaerobic slurry suggested that HCO3? was an important source of alkalinity driving ammonia volatilization in the fresh slurry, but not in the anaerobic slurry. CaCl2, addition did not affect urea hydrolysis, nor net nitrogen mineralization. The decrease in ammonia loss achieved through CaCl2 addition was however not associated with a parallel increase in ammonium concentrations in the soil. Further experiments showed that the ammonia retained by the CaCl2, was probably fixed by the soil and rendered non-extractable by KCl.  相似文献   

14.
有机肥和钾对防治大麦氨害的作用   总被引:1,自引:0,他引:1  
本文主要研究粉砂性低钾土壤上尿素产生的氨对大麦的毒害以及施用有机肥和钾肥对防治大麦氨害的作用。结果表明,亩施8.13公斤尿素10天后可使土壤pH升高1.3个单位左右,氨浓度达到5.3ppm;当土壤氨浓度达到4ppm左右时,大麦产生明显的毒害,根系生长受到严重影响;根系浸出液的相对电导值和K+渗出比显著增高;地上部分生长也受到严重抑制,光合电子传递速率虽增高,但光合磷酸化效率却显著降低,表明氨是光合磷酸化作用的解偶联剂;氨害也抑制了硝酸还原酶的形成,体内精氨酸含量明显增高,且有脯氨酸出现。钾对防治大麦氨害有一定作用,但有机肥料的效果更加显著,采用有机肥与无机肥配合施用,既能解决大麦氨害,又能获得高产。  相似文献   

15.
Nitrogen (N) loss by ammonia (NH3) volatilization is the main factor for poor efficiency of urea fertilizer applied to the soil surface. Losses can be suppressed by addition of zeolite minerals to urea fertilizer. The objective of this study was to evaluate ammonia volatilization from soil and dry-matter yield and nitrogen levels of Italian ryegrass. A greenhouse experiment was carried out with the treatments of urea, urea incorporated into soil, urea + urease inhibitor, urea + zeolite, ammonium nitrate, and unfertilized treatment. Ammonia was captured by a foam absorber with a polytetrafluoroethylene tape. There were few differences between zeolite and urease inhibitor amendments concerning NH3 volatilization from urea. Results indicate that zeolite minerals have the potential to improve the N-use efficiency and contributed to increasing N uptake. Zeolite and urea mixture reduced 50% the losses by volatilization observed with urea.  相似文献   

16.
Abstract

Surface‐applied urea fertilizers are susceptible to hydrolysis and loss of nitrogen (N) through ammonium (NH3) volatilization when conditions favorable for these processes exist. Calcium chloride (CaCl2) and ammonium thiosulfate (ATS) may inhibit urease activity and reduce NH3 volatilization when mixed with urea fertilizers. The objective of this study was to evaluate the effectiveness of CaCl2 and ATS as urea‐N loss inhibitors for contrasting soil types and varying environmental conditions. The proposed inhibitors were evaluated in the laboratory using a closed, dynamic air flow system to directly measure NH3 volatilization. The initial effects of CaCl2 on ammonia volatilization were more accentuated on an acid Lufkin fine sandy loam than a calcareous Ships clay, but during volatilization periods of ≥ 192 h, cumulative N loss was reduced more on the Ships soil than the Lufkin soil. Calcium chloride delayed the commencement of NH3 volatilization following fertilizer application and reduced the maximum N loss rate. Ammonium thiosulfate was more effective on the Lufkin soil than the Ships soil. For the Lufkin soil, ATS reduced cumulative urea‐N loss by 11% after a volatilization period of 192 h. A 20% (v/v) addition of ATS to urea ammonium nitrate (UAN) was most effective on the coarse textured Lufkin soil whereas a 5% addition was more effective on the fine textured, Ships soil. Rapid soil drying following fertilizer application substantially reduced NH3 volatilization from both soils and also increased the effectiveness of CaCl2 but not ATS. Calcium chloride and ATS may function as limited NH3 volatilization inhibitors, but their effectiveness is dependent on soil properties and environmental conditions.  相似文献   

17.
The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3 ) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0% in the CaCO3 amended soil to 460% in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgCl2 should not be used to sterilize calcareous soil if the experiment includes the measurement of soil CO2 production.  相似文献   

18.
Ammonia (NH3) volatilization is the major pathway for mineral nitrogen (N) loss from N sources applied to soils. The information on NH3 volatilization from slow-release N fertilizers is limited. Ammonia volatilization, over a 78-d period, from four slow-release N fertilizers with different proportions of urea and urea polymer [Nitamin 30L (liquid) (L30), Nitamin RUAG 521G30 (liquid) (G30), Nitamin 42G (granular) (N42), and Nitroform (granular) (NF)] applied to a sandy loamy soil was evaluated. An increase in temperature from 20 to 30 °C increased cumulative NH3 volatilization loss in the sandy soil by 1.4-, 1.7-, and 1.8-fold for N42, L30, and G30, respectively. Increasing the proportion of urea in the slow-release fertilizer increased NH3 volatilization loss. At 30 °C, the cumulative NH3 volatilization over 78 d from a sandy soil accounted for 45.6%, 43.9%, 22.4%, and <1% of total N applied as N42, L30, G30, and NF, respectively. The corresponding losses in a loamy soil were 9.2%, 3.1%, and 1.7%. There was a significantly positive correlation between NH3 volatilization rate and concentration of NH4-N released from all fertilizers, except for NF (n = 132; r = 0.359, P = 0.017 for N42; r = 0.410, P = 0.006 for L30; and r = 0.377, P < 0.012 for G30). Lower cumulative NH3 volatilization from a loamy soil as compared to that from a sandy soil appeared to be related to rapid nitrification of NH4-N in the former soil than that in the latter soil. These results indicate the composition of slow-release fertilizer, soil temperature, and soil type are main factors to dominate NH3 volatilization from slow- release fertilizers.  相似文献   

19.
Abstract

Significant losses of nitrogen (N) can occur via volatilization of ammonia (NH3) when non‐incorporated broadcast applications of urea or urea‐containing fertilizers are made. This study was conducted to determine the efficacy of urea nitricphosphate (UNP) as an N and phosphorus (P) source for cool‐season grasses and to evaluate NH3 volatilization potential of UNP as compared to urea under laboratory conditions. A three‐year field study compared UNP to ammonium nitrate (AN) and urea at 56 and 112 kg N/ha for tall fescue (Festuca arundinacea Schreb.) and smooth brome (Bromus inermis Leyss.). Brome yields were significantly higher from UNP as compared to urea for one of the three years. No such differences occurred with fescue. Nitrogen uptake was significantly higher from UNP as compared to urea for one year each for brome and fescue. Phosphorus uptake by brome was significantly higher from UNP as compared to urea for two years. Laboratory incubation studies showed significantly lower NH3 volatilization from UNP than from urea after seven days, but no significant differences after 14 days. The delay in NH3 volatilization was due to the diffusion and subsequent hydrolysis of urea immediately below the soil zone initially influenced by the UNP. The reduction in NH3 volatilization at the early time could partially be attributed to an inhibition of urea hydrolysis and significantly lower soil pH values for UNP as compared to urea in the upper 30 mm of soil cores. The general conclusion from the field and laboratory work was that UNP is a suitable N source for cool‐season grasses, with the primary potential benefit being delayed NH3 volatilization as compared to urea.  相似文献   

20.
Crop response to the phosphorus (P) application is often erratic in most soil types in the world. In Algeria, there is no information on the P behavior in calcareous soils. The purposes of this work were to investigate the degree of P fixing capacity and to predict P fertilizer requirements of crops according to calcareous levels in the soil. Soil samples (at 0–30 cm depth) were collected and spiked with 0, 25 and 50% of lime (CaCO3). Phosphate sorption curves were well fitted to the Freundlich equation. Results indicated that the calcareous level was predominantly controlled the P sorption indices [sorption capacity (a), and P sorption energy (n)] to affect the estimation of external d P requirement (EPR0.2) and P fertilizer rates. The understanding of P sorption and desorption by soils and extrapolating the developed relationship between soil calcareous contents and P fertilizer rates would be quite promising and accurate approach for the economic and effective use of P fertilizers in calcareous soils of Algeria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号