首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 80 毫秒
1.
升高CO2浓度能够促进作物的光合作用,提高作物的生物量和产量,但关于CO2与NH+4/NO-3比及其交互作用对作物影响的研究较少,为探索番茄幼苗生长发育对CO2浓度升高的响应是否对NH+4/NO-3配比有较强的依赖关系,本试验在营养液栽培条件下,以番茄(Lycopersicun esculentum Mill)为试材,研究正常大气CO2浓度(360μL/L)和倍增CO2浓度(720μL/L)与不同NH+4/NO-3配比的交互作用对番茄幼苗生长的影响.结果表明:CO2浓度升高提高了低NH+4/NO-3比例处理中番茄叶片的光合速率和水分利用率,提高幅度随NH+4/NO-3比例的降低而增强,光合速率增强最大达55%.在同一CO2浓度处理下净光合速率与水分利用率均随NH+4/NO-3比例的增加而显著降低.这说明CO2浓度升高对番茄幼苗生长发育的促进作用随NH+4/NO-3比例的降低而提高,但并没有减弱全NH+4-N处理中番茄幼苗的受毒害作用.综上所述,CO2浓度升高能提高植物生产的节水能力和水分生产力;水培条件下,NO-3-N是最适合番茄幼苗生长发育的氮源,其它NH+4/NO-3比例对番茄幼苗的生长发育有一定的抑制作用,仅以NH+4-N作氮源则番茄幼苗很难生长.  相似文献   

2.
采用培养试验研究了磷缺乏与正常供磷条件下,CO2浓度由350μL/L升高至800μL/L苗期番茄的生物量、根系特征和不同器官N、P、K养分含量的变化。结果表明,无论缺磷与否,CO2浓度升高均能显著增加番茄地上部及根系的干物质积累量,提高根冠比。在磷缺乏条件下,CO2浓度升高对番茄根系生长的促进主要表现为增加根系的体积和表面积;而在磷正常供应条件下主要表现为同时增加根体积和分根数,有利于形成强壮的根系。在两种供磷水平下,CO2浓度升高对番茄各器官的N、P、K含量产生不同的稀释效应,但N、P、K总积累量却随CO2浓度升高而显著增加;而且CO2浓度与供P水平对番茄植株的N、P、K积累量具有极显著的正交互效应。  相似文献   

3.
以CO2浓度升高为主要特征的气候变化对作物生长发育及产量形成的影响日益受到重视。冬小麦是我国主要粮食作物之一, 主要分布在干旱及半干旱地区, 且生长期内多干旱少雨。研究不同水分条件下冬小麦的生长变化及水分利用对CO2浓度升高的响应具有重要的科学和实践意义。本研究在封顶式生长室中对2个土壤水分水平[适宜水分: 70%~80%田间持水量; 干旱胁迫: 50%~60%田间持水量]的盆栽冬小麦进行了CO2熏蒸试验[背景大气浓度: (396.1±29.2) μmol·mol-1; 升高的浓度: (760.1±36.1)μmol·mol-1]。对小麦植株生理指标、生物量、产量、耗水量和水分利用效率(WUE)等的研究结果表明, 与背景大气CO2浓度相比, CO2浓度升高可促进冬小麦生长, 其地上生物量显著增加, 适宜水分和干旱胁迫条件下分别增加了28.6%和18.6%; 籽粒产量显著增加, 适宜水分和干旱胁迫条件下分别增加了32.6%和22.6%; CO2浓度升高主要通过增加穗粒数提高籽粒产量, 穗粒数在适宜水分条件下提高24.3%, 干旱胁迫条件下提高15.5%, 对千粒重没有显著影响。CO2浓度升高使群体和产量WUE显著提高, 在适宜水分条件下提高幅度较大, 分别提高17.7%和24.8%。CO2浓度升高显著提高了叶片光合速率(Pn)、降低了气孔导度(Gs)和蒸腾速率(Tr); 在适宜水分和干旱胁迫下Pn分别提高15.6%与12.9%, Gs分别降低22.7%与18.2%, Tr分别降低8.9%与7.5%。CO2浓度升高提高了叶片水势及叶绿素含量; 在适宜水分条件下叶片水势提高幅度较大, 为7.7%; 叶片叶绿素含量在2种水分条件分别提高7.5%与3.8%。由以上试验结果可得出: CO2浓度升高对冬小麦的生长、产量及水分利用效率均具有促进作用, 而且在土壤水分状况较好时, 这种作用效果更明显; CO2浓度升高主要通过增加穗粒数来促进产量提高。  相似文献   

4.
试验以\"兴海12号\"番茄为研究对象,在施用4种不同浓度的CO_2的基础上,又对每个CO_2浓度处理下的番茄做了4个不同浓度的硒处理。研究了不同浓度CO_2施肥对番茄积硒效应的影响。设各独立隔间CO_2浓度依次为大气浓度(CK)、(600±25)μmol·mol~(-1)(T1)、(800±25)μmol·mol~(-1)(T2)、(1 000±25)μmol·mol~(-1)(T3)。在此基础上每个隔间的番茄材料实施包括空白在内的4个硒水平的处理L0(空白)、L1(2 mg·L~(-1))、L2(4 mg·L~(-1))、 L3(6 mg·L~(-1))。在相同的CO_2条件下叶面喷硒,随着施硒浓度的升高,使番茄果实内总硒和有机硒含量均有所升高,并且当施硒浓度相同时,随着CO_2浓度升高,番茄果实内总硒及有机硒都有显著的提升,且800μmol·mol~(-1)处理下效果最佳。本次试验在研究了CO_2施肥对番茄硒积累及转化的同时也比较了不同CO_2与亚硒酸钠的不同组合配施下成熟果实主要营养物质含量,结果为单独施硒与CO_2以及硒与CO_2的配施均使番茄营养品质得到提升。果实内维生素C、番茄红素及可溶性总糖在组合T2L3(CO_2浓度为800μmol·mol~(-1),硒浓度为6 mg·kg~(-1))时含量最高,提升显著。在T3L2(CO_2浓度为1 000μmol·mol~(-1),硒浓度为4 mg·kg~(-1))时有较高的糖酸比。  相似文献   

5.
该文采用中国农业大学农业部设施农业生物环境工程重点开放实验室研制的设有组培微环境实时监控系统的大型组培箱,分别对矮牵牛、菊花和番茄组培苗移栽后箱体内CO2浓度的变化规律及不同CO2增施浓度对无糖组培苗生长的影响进行了研究。试验表明:移栽后的当天,组培箱内的CO2浓度便开始下降,第2 d下降速度明显加快,均降至100 μL/L以下。在移栽后的第4~5 d,箱体内CO2浓度下降到35 μL/L左右后便不再下降,一直在30~40 μL/L之间波动。因此得出:无糖培养在组培苗移栽后的第2 d就应增施CO2,否则会直接影响组培苗的生长。在不同CO2增施浓度试验中,当光照度控制在80 μmol/(m2·s)时,CO2浓度为(650±50)μL/L时培养出的组培苗生长状况最好。  相似文献   

6.
模拟CCS技术CO2泄露对C4作物种子萌发的影响   总被引:1,自引:0,他引:1  
模拟CCS技术CO2泄露对C4作物种子萌发的影响,以期为CCS技术CO2泄露后可能产生的环境影响提供基础性资料。利用CO2人工气候箱,模拟CCS技术CO2泄露产生的高浓度CO2环境,研究在CO2分别为正常大气CO2浓度(对照组),10000,20000,40000,80000 mg/kg时,对玉米、高粱、谷子、糜子4种C4作物发芽率、发芽势以及平均发芽天数的影响。高浓度CO2对玉米发芽率无明显影响,而高粱、谷子和糜子分别在10000,20000, 20000 mg/kg时发芽率达到最高值;高浓度CO2对玉米发芽势亦无明显影响,而高粱、谷子和糜子均在20000 mg/kg时发芽势达到最高值;高浓度CO2对4种C4作物发芽天数均产生较小影响,其中,对糜子影响较为显著。在不同CO2浓度范围内对C4作物种子发芽率分别有促进和抑制作用,促进和抑制作用不是很显著,其中,促进范围1%~5%,抑制范围1%~4%;高浓度CO2对C4作物种子发芽势有比较显著的促进作用,较对照组,发芽势的促进范围为9%~16%;高浓度CO2对4种C4作物发芽天数均产生较小影响。  相似文献   

7.
环境CO2浓度增加对玉米生育生理及产量的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
研究了盆栽玉米在700、600、500和350ppm的CO2浓度处理下,生育、生理及产量形成的动态变化和反应。结果表明,CO2浓度增加促进了玉米的生长和发育,物候期提前,光合速率增大,蒸腾系数减少,加快了根、茎、叶等干物质积累,提高了生物产量和经济产量。实验还表明:从苗期、抽雄、吐丝、乳熟到收获的各生育阶段,CO2浓度对玉米的影响有所不同,以抽雄阶段影响最大;对植株的产量性状影响程度也不一致(穗>茎叶>根),收获指数也随CO2浓度增加而有所提高。此外,CO2浓度增加还可增强玉米抗短期高温(>40℃)和低光(常量的1/2)胁迫的能力。  相似文献   

8.
CO2浓度升高对作物的影响日益受到重视,水分是作物生长的必要条件之一。冬小麦是我国的主要粮食作物之一,阐明高CO2浓度和水分条件互作对冬小麦碳氮转运的影响,对客观认识气候变化背景下作物的水分管理及肥料施用具有实际指导意义。本研究利用开放式CO2富集系统(FACE)平台,以冬麦品种‘中麦175’为试验材料,采用盆栽试验方法,研究了不同CO2浓度[正常浓度(391±40)μmol·mol?1和高浓度(550±60)μmol·mol?1]及水分条件(湿润条件和干旱条件,即75%和55%田间土壤最大持水量)的冬小麦花前碳氮积累及花后碳氮转运的规律特征。结果表明:湿润条件下,与正常CO2浓度相比,高CO2浓度促进冬小麦地上部干物质及碳氮积累,开花期增幅分别为18.1%、16.5%、14.9%,成熟期增幅分别为6.6%、1.3%、4.5%,并提高碳氮转运能力及对籽粒贡献率,转运量、转运率及对籽粒贡献率的增幅碳素依次为39.3%、20.0%、30.0%,氮素依次为19.1%、3.8%、10.8%。干旱条件下,与正常CO2浓度相比,高CO2浓度对地上部碳氮积累有一定的促进作用,开花期和成熟期碳积累量分别增加3.0%和10.7%,氮积累量分别增加0和15.8%;但高CO2浓度阻碍了碳氮的转运,转运量、转运率降幅碳素分别为10.2%、12.8%,氮素分别为7.2%、7.1%;碳氮对籽粒贡献率则变化不同,碳降低14.4%,而氮升高31.3%。干旱及高CO2浓度互作与湿润条件正常CO2浓度处理相比,冬小麦碳素转运对籽粒贡献率降低更明显,地上部碳素转运量、转运率及对籽粒贡献率降幅分别为36.2%、16.9%、22.3%,但提高了氮素转运对籽粒贡献率,氮素转运量及转运率分别降低35.7%、15.2%,对籽粒贡献率增加7.0%。综合而言,高CO2浓度可促进冬小麦碳氮积累及其在花后向籽粒的转运,水分不足可能成为主要的物质转运障碍因子,限制CO2促进作用发挥。  相似文献   

9.
以土培和砂培黄瓜幼苗为试材,研究CO2施肥对植株矿质营养吸收和分配的影响。结果表明:每天上午以1100±100 μl/L CO2浓度施肥3 h或上、下午各施肥3 h明显降低植株各部位多数矿质元素的含量,CO2施肥时间延长,降幅增大。CO2施肥增强了黄瓜对矿质元素的吸收能力,使单株吸收总量显著增加,且施肥时间越长,吸收数量越多。因此,在CO2施肥的同时应增加矿质营养的供给。  相似文献   

10.
在空闲拱棚和黄瓜日光温室内,分别研究了化学反应法(H2SO4+NH4HCO3)、煤球燃烧法和颗粒CO2气肥3种肥源的性能,并与液体CO2进行成本比较,结果表明:化学反应法产气迅速,设备折旧成本较低;煤球燃烧法产气速度中等,原料成本最低;颗粒CO2气肥产气速度较慢且不易调控,原料成本最高。考虑化学反应产物的再利用因素,化学反应法、煤球燃烧法和液体CO2 3种肥源总成本接近,但从生态、节能、成本和效果等方面综合评价,煤球燃烧法原料丰富、成本低廉,较符合我国目前的设施、经济、资源和技术条件。  相似文献   

11.
增施CO2降低小白菜硝酸盐积累的机理研究   总被引:2,自引:2,他引:0       下载免费PDF全文
以低硝酸盐积累基因型(东妃)和高硝酸盐积累基因型(高雄甜脆)两种小白菜为材料,采用溶液培养法研究了增施CO2降低蔬菜硝酸盐积累的生理机制。结果表明,CO2浓度升高能显著提高2种基因型小白菜的生物量和硝酸还原酶活性,并降低根、茎叶各部位的硝酸盐含量。CO2浓度升高不仅促进了植株对硝态氮的吸收,而且植株吸收硝酸盐的累积量增幅均高于鲜重的增幅。由此可见,除了鲜重增加的稀释作用,处理后生理机制的变化也可能是CO2浓度升高引起硝酸盐含量降低的重要原因。研究还表明,增施CO2后“东妃”的硝酸盐含量降低百分率与硝酸还原酶活性的增加百分率呈极显著相关,而“高雄甜脆”的硝酸盐含量降低百分率则与鲜重的增加百分率的相关性达极显著水平。说明增施CO2后植株各部位硝酸还原酶活性提高及鲜重的增加均为引起硝酸盐含量降低的重要原因,但贡献率具有明显的基因型差异。  相似文献   

12.
通过试验测试揭示了自然扩散状态下的畜菜互补生态系统内温室中CO2分布不均,存在着较大的浓度梯度以及畜菜配比不当等问题。设计并试验测试了塑料风管传输装置及兼有CO2传输功能的地下热交换系统,两者对改善系统内的CO2分布,提高蔬菜产量起到了明显作用。  相似文献   

13.
现有畜菜互补生,系统畜菜配比差异极大,致使CO2浓度过高或过低,影响CO2气体施肥效果。在设有内部CO2通风传输装置且温室CO2均匀分布的条件下,建立了系统CO2质量平衡数学模型,编制并验证了CO2日变化动态模拟的计算机程序。利用该程序,以家畜给温室提供适宜的CO2浓度为依据,以番茄与育肥猪为例,对沈阳地区主要CO2施肥期12月~3月的畜菜配比进行了优化选择,为该生态系统的建设及管理提供了一定的依据。  相似文献   

14.
    
An experiment was conducted to examine the effect of CO2 enrichment on the nitrate uptake, nitrate reduction activity, and translocation of assimilated-N from leaves at varying levels of nitrogen nutrition in soybean using 15N tracer technique. CO2 enrichment significantly increased the plant biomass, apparent leaf photosynthesis, sugar and starch contents of leaves, and reduced-N contents of the plant organs only when the plants were grown at high levels of nitrogen. A high supply of nitrogen enhanced plant growth and increased the reduced-N content of the plant organs, but its effect on the carbohydrate contents and photosynthetic rate were not significant. However, the combination of high CO2 and high nitrogen levels led to an additive effect on all these parameters. The nitrate reductase activity increased temporarily for a short period of time by CO2 enrichment and high nitrogen levels. 15N tracer studies indicated that the increase in the amount of reduced-N by CO2 enrichment was derived from nitrate-N and not from fixed-N of the plant. To examine the translocation of reduced-N from the leaf in more detail, another experiment was conducted by feeding the plants with 15NO3-N through a terminal leaflet of an upper trifoliated leaf under depodding and/or CO2 enrichment conditions. The export rate of 15N from the terminal leaflet to other plant parts decreased by depodding, but it increased by CO2 enrichment. CO2 enrichment increased the percentage of plant 15N in the stem and / or pods. Depodding increased the percentage of plant 15N in the leaf and stem. The results suggested that the increase in the leaf nitrate reduction activity by CO2 enrichment was due to the increase of the translocation of reduced-N from leaves through the strengthening of the sink activity of pods and / or stem for reduced-N.  相似文献   

15.
The mechanism of SO2 inhibition of photosynthesis in intact leaves of tomato and maze was studied to evaluate SO2 inhibition of photorespiration. Leaf tissues were fumigated with SO2 under photorespiratory (low CO, and/or high O, concentrations) and non-photo-respiratory conditions. When tomato leaf disks were fumigated with 10 ppm SO2 at 2, 21 and 100° o O., SO2 inhibited photosynthesis at 2% O2 in the same degrees as at 21% O2. SO2 inhibition of photosynthesis was depressed at higher CO2 concentrations when the disks were fumigated with SO2 at different CO2 concentrations. High CO2 concentrations also reduced the photosynthesis inhibition of maize leaf disks. These results suggest that SO2 inhibits photosynthesis through other mechanisms than photorespiration inhibition and confirm the view that SO2 competes with CO2 for the carboxylating enzymes in photosynthesis  相似文献   

16.
以甜瓜幼苗为试材,研究不同浓度CO2对其光合特性的影响。结果表明:与对照相比,经800,1000,1200,1400 μL/L加富的甜瓜幼苗的最大净光合速率的增幅分别为39.59%、70.52%、80.64%和131.21%。蒸腾速率分别下降:12.16%、27.18%、37.34%和54.65%,同时叶气温差也呈上升趋势。胞间CO2浓度上升12.04%~14.25%。高浓度CO2在降低甜瓜幼苗光补偿点的同时,还使光饱和点升高。甜瓜幼苗CO2加富的适宜浓度为1200 μL/L左右。  相似文献   

17.
On examining the changes in lamellae and stroma nitrogen during leaf development, it is demonstrated that the lamellae and stroma fractions ofrice chloroplasts develop in quite different ways. In the case of stroma, the stroma materials existing in the leaf section which has just emerged from a leaf sheath are quite limited and the major part of this fraction is derived from the successive protein synthesis, i.e., the synthesis of this fraction was markedly increased during leaf expansion. This developmental pattern of the stroma coincided with the changes in the high-molecular-weight water soluble leaf protein, which seemed to be mainly composed of Fraction I protein. A rapid increase in stroma nitrogen was found to be a major cause for an increase in the leaf nitrogen content during leaf development.

On the other hand, the developmental pattern of the lamellae fraction was characterized by the fact that a considerable amount of this fraction had already been prepared when a leaf emerged from a leaf sheath and thereafter, no outstanding increase was seen compared to that of the stroma. This developmental pattern of the lamellae fraction resulted in a lowering of the proportion of lamellae nitrogen to the total leaf nitrogen during leaf development.

A great change in the lamellae-stroma composition of chloroplasts was observed. The proportion of stroma nitrogen to the total chloroplast nitrogen tended to increase as a leaf develops. Since the developmental stage varied according to the regions of a leaf, variation of the lamellaestroma composition was seen even within a leaf, i.e., the proportion of stroma nitrogen increased from base to tip.

In order to compare the synthetic rate of chlorophyll with those of the stroma and lamellae fractions, the changes in the ratios of stroma nitrogen/chlorophyll and lamellae nitrogen/chlorophyll were examined. The lamellae nitrogen/chlorophyll ratio decreased as a leaf developed, whereas the stroma nitrogen/chlorophyll ratio increased. Then the synthetic rates of these fractions during leaf development turned out to be of the same order as the stroma fraction, chlorophyll, lamellae fraction.  相似文献   

18.
From the global change perspective, increase of atmospheric CO2 and land cover transformation are among the major impacts caused by human activities. In this study, we are addressing the combined issues of the effect of CO2 concentration increase and plant type on soil microbial activities by asking how annual and perennial plant groups affect soil microbial processes under elevated CO2. The experimental design used a mix of species of different growth forms for both annuals and perennials. Our objective was: (1) to determine how two years of annual or perennial plant cover and CO2 enrichment could affect Mediterranean soil microbial processes; (2) to test the resistance and the resilience of these soil functional processes after a natural perturbation. We determined the effects of 2 years atmospheric CO2 enrichment on soil potential respiration (SIR), denitrification (DEA) and nitrification (NEA) activities. We could not find any significant effect of CO2 increase on SIR, DEA and NEA. However, we found a strong effect of the plant cover type, i.e. annuals versus perennials, on the potential microbial activity related to N cycling. DEA and NEA were significantly higher in soil under annual plants while SIR was not significantly different. To determine whether these changes would survive a natural perturbation, we carried out a rain event experiment once the experimental treatments (i.e. different plant cover and atmospheric CO2 concentration) were stopped. The soil potential respiration, as expressed by the SIR, was not affected and remained stable. DEA rates converged rapidly under annuals and perennials after the rain event. Under both annuals and perennials NEA increased significantly after the rain event but remained significantly higher in the soil with annual plants. The relative change of the soil microbial processes induced by annual and perennial plants was inversely related to the density and the diversity of the corresponding microbial functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号