首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The virus neutralization (VN) antibody titers of serum samples from 18 individuals representing 8 carnivore species vaccinated with commercial polyvalent vaccines optimized for domestic cats containing inactivated feline panleukopenia virus (FPLV) were evaluated against canine parvovirus type 2 (CPV2). In addition, the titers among 5 individuals from 4 carnivore were evaluated against antigenic variants of feline parvoviruses; FPLV, CPV2, CPV2a, CPV2b, CPV2c, mink enteritis virus type 1 (MEV1) and MEV2. The polyvalent vaccines induced cross-reactive VN titers against antigenic variants of feline parvoviruses in nondomestic felids. However, we observed very low cross-reactive VN antibody in lions and Siberian tigers, therefore we should pay attention to CPV infections in these animals even if they were vaccinated with inactivated FPLV vaccines.  相似文献   

2.
Modified live feline panleukopenia virus (FPLV) vaccine protected dogs against canine parvovirus (CPV) infection. However, unlike the long-lived (greater than or equal to 20-month) immunity engendered by CPV infection, the response of dogs to living FPLV was variable. Doses of FPLV (snow leopard strain) in excess of 10(5.7) TCID50 were necessary for uniform immunization; smaller inocula resulted in decreased success rates. The duration of immunity, as measured by the persistence of hemagglutination-inhibiting antibody, was related to the magnitude of the initial response to vaccination; dogs with vigorous initial responses resisted oronasal CPV challenge exposure 6 months after vaccination, and hemagglutination-inhibiting antibodies persisted in such dogs for greater than 1 year. Limited replication of FPLV in dogs was demonstrated, but unlike CPV, the feline virus did not spread to contact dogs or cats. Adverse reactions were not associated with living FPLV vaccination, and FPLV did not interfere with simultaneous response to attenuated canine distemper virus.  相似文献   

3.
Four monoclonal antibodies (mAb) against a feline panleukopenia virus (FPLV) TU 1 strain, one of the host range variants of feline parvovirus (FPV), were produced and applied for antigenic analysis of FPLV, canine parvovirus (CPV) and mink enteritis virus (MEV). All mAbs were considered to be directed at epitopes on the virus capsid surface because they neutralized the infectivity and inhibited the hemagglutination (HA) of the homologous virus as well as other FPV strains. They were of the mouse IgG1 type. High antigenic homogeneity among FPLV strains was confirmed by HA-inhibition (HI) test with the mAbs and polyclonal immune sera against FPLV or CPV. But the TU 11 strain of FPLV was antigenically distinguished from the remaining 14 FPLV strains by both the HI test and the micro-neutralization test with one of the mAbs produced. MEV Abashiri strain was found to be antigenically indistinguishable from FPLV. Most of the CPV strains isolated after 1981 were considered to be antigenically different from earlier CPV isolates when some mAbs were applied in the serological tests, confirming the replacement of CPV by an antigenic variant in Japan. However, antigenically different CPVs were detected at the end of 1984 from unrelated epizootics occurred a month apart in the same area.  相似文献   

4.
Canine parvovirus type 2a (CPV-2a) and type 2b (CPV-2b) have recently been isolated from cats throughout the world, and CPV-2b strain FP84 has been reported to be virulent in domestic cats. Although live feline panleucopenia virus (FPLV) vaccines protect domestic cats from CPV infection, the efficacy of inactivated FPLV vaccines has not been established. In this study, two domestic cats were vaccinated with a commercial inactivated FPLV vaccine and challenged with CPV-2b strain FP84 isolated from a domestic cat. The cats were protected against CPV-2b strain FP84 infection and their clinical signs were suppressed, although the two unvaccinated cats showed the typical clinical signs of parvovirus infection.  相似文献   

5.
Fourteen feline parvovirus (FPV) strains isolated from cats, mink and dogs were comparatively examined on their antigenic and genetic diversities by using monoclonal antibodies against feline panleukopenia virus (FPLV) and restriction enzyme analysis of viral DNA. Mink enteritis virus (MEV) strains recently isolated in the northeastern area of the People's Republic of China were found to possess more similar antigenic and genetic properties to the antigenic variant virus of canine parvovirus (CPV) ("new" antigenic type CPV), than to FPLV strains and MEV Abashiri strain of Japan. A feline isolate detected in normal cat feces was considered to be rather CPV because of its antigenic and genetic characteristics. An early isolate of "new" antigenic type CPV strains showed a similar cleavage pattern to those of "old" antigenic type CPV strains when digested with HinfI. The results including some features above-mentioned suggest the presence of antigenic heterogeneities and genomic polymorphisms among FPV subspecies viruses.  相似文献   

6.
The fluorescent antibody (FA) test is compared with the haemagglutination inhibition (HI) test for parainfluenza virus type 3 (PI-3) and virus neutralisation (VN) test for respiratory syncytial (RS) virus for detection and titration of virus-specific antibodies. In experimentally inoculated calves PI-3 and RS virus FA tests detected seroconversion at the same time as HI and VN tests, however, in serially diluted sera, the FA test was positive to higher dilution. In studies with paired samples from calves from four farms with respiratory problems, the FA test gave similar results to PI-3 HI and RS virus VN tests. Large increases in antibody titre to RS virus detected by FA and VN tests indicated this was the problem on two of the farms. Individual animals showed large rises to PI-3 by FA and HI test on three farms. It is concluded that the FA test provides a rapid and sensitive alternative to the more conventional serological tests for respiratory viruses.  相似文献   

7.
为研制貉细小病毒性肠炎疫苗,筛选出针对貉细小病毒性肠炎免疫原性好、安全高效的疫苗备选株,应用CRFK细胞从辽宁省发病貉的粪便中分离病毒,并通过形态学、血清学、分子生物学、动物回归及免疫接种等方法对分离株进行鉴定。鉴定结果表明成功分离出1株貉细小病毒,命名为LN10-1株。其VP2基因核苷酸序列与猕猴源猫泛白细胞综合征病毒株(BJ-22/2008/CHN株)相似性高达99.7%。VP2蛋白上决定宿主范围的2个氨基酸位点发生了突变。VP2基因种系发生分析显示,LN10-1株位于猫泛白细胞综合征病毒(Feline panleukopenia virus,FPLV)、蓝狐细小病毒(Blue fox parvovirus,BFPV)、水貂肠炎病毒(Mink enteritis virus,MEV)组成的食肉类动物细小病毒聚类分支与由犬细小病毒(Canine parvovirus,CPV)组成的聚类分支。由LN10-1株制备的灭活疫苗免疫结果显示,接种28d细小病毒中和抗体滴度可达到1∶256以上。推测LN10-1株可能正处于FPLV与CPV进化的中间状态,或是CPV适应新宿主(貉)而形成的一种新病毒,可以作为针对貉细小病毒性肠炎灭活疫苗的候选株。  相似文献   

8.
试验旨在利用胶体金免疫层析技术建立快速检测犬血清中犬细小病毒(canine parvo virus, CPV)血凝抑制(haemagglutination inhibition, HI)抗体效价的方法,用于CPV疫苗免疫效果评价。采用双抗体夹心法,以抗CPV血凝相关抗原的单克隆抗体制备CPV抗原检测试纸条;将犬血清进行不同比例系列稀释后,分别与定量CPV抗原充分反应,滴入CPV胶体金试纸条,根据试纸条检测线(test line,T线)消失时的血清最高稀释倍数判断血清中CPV抗体的HI效价;用此方法检测86份犬血清样品,并与传统血凝抑制试验方法进行分析比较。结果显示,成功制备CPV抗原检测试纸条,确定了试纸条检测犬血清CPV-HI效价的反应条件和结果判定标准。结果表明,在检测不同稀释倍数犬血清反应后的CPV抗原时,能使试纸条T线消失时的血清最高稀释倍数与HI效价具有正相关性,犬血清最高稀释倍数乘以4即为HI效价;两种方法的符合率达90.7%。本试验初步建立了胶体金试纸条检测CPV血凝抑制效价的方法,为检测CPV-HI效价提供了一种操作简单、快速的试验方法,可用于CPV疫苗免疫效果评价。  相似文献   

9.
The study was aimed to use colloidal gold immune chromatography technology to establish a rapid method for detection of canine serum canine parvovirus (CPV) hemagglutination inhibition (HI) titer and CPV vaccine immunization effect assessment.Double antibody sandwich method and monoclonal antibodies of anti-CPV hemagglutination antigen were used to prepare CPV antigen test strip.Canine serum with different proportion respectively was mixed with quantitative CPV antigen for full reaction,then dropped the mixture into the CPV colloidal gold test strip,so according to the highest serum dilution ratios when the test strip line T (line T) vanishes,it was to judge CPV antibodies in serum of the HI titer.This method had been used to detect 86 canine serum samples,at the same time,analyzing and comparing it with traditional hemagglutination inhibition test method.The results showed that the CPV antigen detection test strip was successfully prepared,and the reaction conditions and results of the test strip for detecting the titer of CPV-HI in canine serum were determined.The results indicated that when detecting CPV antigen after the dilution of different ratios of canine serum,the highest serum dilution ratios when the strip line T vanished and the HI titer had positive correlation.The highest dilution ratios of canine serum multiplied by 4 was the HI titer.The results of two methods had 90.7% consistency.This experiment established the colloidal gold immune chromatography test strip for the detection of CPV-HI titers method initially.This CPV-HI detection provided a simple and fast test method for the effect evaluation of CPV vaccine immune.  相似文献   

10.
Canine parvovirus (CPV) and feline panleukopaenia virus (FPLV) are two closely related viruses, which are known to cause severe disease in younger unvaccinated animals. As well as causing disease in their respective hosts, CPV has recently acquired the feline host range, allowing it to infect both cats and dogs. As well as causing disease in dogs, there is evidence that under some circumstances CPV may also cause disease in cats. This study has investigated the prevalence of parvoviruses in the faeces of clinically healthy cats and dogs in two rescue shelters. Canine parvovirus was demonstrated in 32.5% (13/50) of faecal samples in a cross sectional study of 50 cats from a feline only shelter, and 33.9% (61/180) of faecal samples in a longitudinal study of 74 cats at a mixed canine and feline shelter. Virus was isolated in cell cultures of both canine and feline origin from all PCR-positive samples suggesting they contained viable, infectious virus. In contrast to the high CPV prevalence in cats, no FPLV was found, and none of 122 faecal samples from dogs, or 160 samples collected from the kennel environment, tested positive for parvovirus by PCR. Sequence analysis of major capsid VP2 gene from all positive samples, as well as the non-structural gene from 18 randomly selected positive samples, showed that all positive cats were shedding CPV2a or 2b, rather than FPLV. Longitudinally sampling in one shelter showed that all cats appeared to shed the same virus sequence type at each date they were positive (up to six weeks), despite a lack of clinical signs. Fifty percent of the sequences obtained here were shown to be similar to those recently obtained in a study of sick dogs in the UK (Clegg et al., 2011). These results suggest that in some circumstances, clinically normal cats may be able to shed CPV for prolonged periods of time, and raises the possibility that such cats may be important reservoirs for the maintenance of infection in both the cat and the dog population.  相似文献   

11.
The protective immunity induced by 3 experimental FeLV vaccines were evaluated: Prototype inactivated FeLV vaccine developed from a molecularly cloned FeLV isolate (FeLV-FAIDS-61E-A); a mixture of immunodominant synthetic peptides corresponding to regions of the FeLV-Gardner-Arnstein-B (FeLV-GA-B) envelope proteins; and an adjuvant-disrupted but non-activated virus prepared from a non-cloned FeLV field isolate comprised of subgroup A and B viruses (FeLV-05821-AB). Included as controls were parallel groups of cats inoculated with adjuvants alone or with an established commercial FeLV vaccine. After each inoculation and after virulent virus challenge exposure, sera from all cats were assayed for ELISA-reactive antibody against purified FeLV, FeLV neutralizing (VN) antibody, and FeLV antigenemia/viremia--viral p27 antigen in serum and within circulating leukocytes. Immunity was challenged by oral/nasal exposure of vaccinated and control cats with FeLV-FAIDS-61E-A or FeLV-05821-AB, an infective, noncloned, tissue-origin, FeLV field isolate containing subgroup-A and -B viruses. Vaccine-induced immunity was assessed by comparing the postchallenge-exposure incidence of persistent viremia and the pre- and postchallenge exposure titers of VN and ELISA antibody in cats of the control and vaccine groups. The percentage of cats, that resisted development of persistent viremia after FeLV challenge exposure and the preventable fraction (PF) for the vaccine groups (which adjusts for the severity of the challenge and the degree of innate resistance in the controls) were as follows: adjuvant controls, 26%; FeLV-FAIDS-61E-A inactivated virus vaccine, 95% (PF = 93.2%); FeLV-GA-B peptide vaccine, 5% (-28.4%); FeLV-05821-AB noninactivated vaccine, 67% (55.4%); and commercial FeLV vaccine, 35% (12.2%). The prechallenge exposure mean VN antibody titer for each group was: less than 1:8 in the adjuvant controls; 1:43 in the FeLV-FAIDS-61E-A-vaccinated cats; less than 1:8 in the peptide-vaccinated cats; 1:38 in the noninactivated virus-vaccinated cats group; and 1:12 in the cats vaccinated with the commercial vaccine. Thus, induction of VN antibody in the vaccinated cats, although modest, appeared to be correlated with induction of protective immunity as defined by resistance to FeLV challenge exposure. Results of these studies indicate that inoculation of cats with an experimental inactivated virus vaccine prepared from a molecularly cloned FeLV isolate was most effective in stimulating protective immunity against heterologous and homologous FeLV challenge exposure.  相似文献   

12.
Cats vaccinated against FPLV were protected against infection with a feline isolate of CPV2b. Nonvaccinated cats developed a lymphopenia and excreted virus which infected susceptible in-contact cats.  相似文献   

13.
FS-L3 cells, originating from porcine kidney, were used for propagation of Hemagglutinating encephalomyelitis virus (HEV) and development of a virus neutralizing (VN) test. Sera of pigs, rats, cows and dogs had VN activities to HEV. On the other hand, sera of mice, rabbits, goats, sheep, horses, cats, chickens, hamsters and human did not have measurable VN activities, although these sera had high HI activities. Our results support the idea that the VN is a more reliable measure of HEV infection than the conventionally used HI test.  相似文献   

14.
Control of feline leukaemia virus   总被引:1,自引:1,他引:0  
Feline leukaemia virus (FeLV) usually occurs in its natural species, the domestic cat. FeLV is also important to human individuals as a comparative model, as it may cause a variety of diseases, some malignant and some benign, such as immunosuppression, which bears a resemblance to AIDS (acquired immune deficiency syndrome) in man. FeLV is transmitted among cats by contagion. The main sources of infection are persistently infected carrier cats which continuously excrete virus. Dissemination of FeLV among cats may be prevented by identifying infected carrier cats and removing them from contact with non-infected cats. Removal programmes using indirect immunofluorescence antibody tests were applied successfully in The Netherlands. The proportion of FeLV-positive cats decreased from 9% in 1974 to approximately 3% in 1985 during such a programme. The results of a removal programme carried out in a catbreeders' society were even better: the incidence of cats positive for FeLV decreased from 11% in 1974 to less than 2% within 4 years. None of the cats tested in this society has been found to be positive for FeLV since 1984. Besides removal programmes, other methods of control, such as pre-exposure treatment, were developed to prevent the spread of FeLV. We attempted to protect kittens against oronasal infection with FeLV by treatment with virus-neutralizing (VN) monoclonal antibodies (MoAbs) directed against an epitope on the viral glycoprotein gp70. However, no protection was achieved. It is unlikely that the amount of VN antibodies, the mode and route of their application or the infectious dose of FeLV used can account for this failure. Other possible explanations for the lack of protective effect are that (i) the restricted epitope specificity of the MoAb preparation used may have led to selection of neutralization-resistant virus mutants, or (ii) other mechanisms than virus neutralization (complement-mediated lysis, antibody-dependent cell cytotoxicity), that may be involved in protection, function less efficiently with MoAb. However, in the light of our finding that an early anti-idiotypic response is observed in all cats following administration of the MoAb preparation, the rapid clearance of anti-FeLV MoAb from the circulation is a more likely explanation. Efforts were further made to develop a vaccine for controlling FeLV infection. The immunostimulating complex vaccine (FeLV-ISCOM vaccine), a subunit vaccine in which FeLV gp70 is presented in a particular manner, looks promising. The protective effect of FeLV-ISCOM vaccine was studied by vaccinating six 8-week-old SPF cats with ISCOM, followed by oronasal challenge with FeLV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The role of cell-mediated immunity (CMI) in protection of birds from Newcastle disease was investigated by two different strategies in which only Newcastle disease virus (NDV)-specific CMI was conveyed without neutralizing antibodies. In the first strategy, selected 3-wk-old specific-pathogen-free (SPF) birds were vaccinated with either live NDV (LNDV), ultraviolet-inactivated NDV (UVNDV), sodium dodecyl sulfate-treated NDV (SDSNDV), or phosphate-buffered saline (PBS) (negative control) by the subcutaneous route. Birds were booster vaccinated 2 wk later and challenged with the velogenic Texas GB strain of NDV 1 wk after booster. All vaccinated birds had specific CMI responses to NDV as measured by a blastogenesis microassay. NDV neutralizing (VN) and hemagglutination inhibition (HI) antibody responses were detected in birds vaccinated with LNDV and UVNDV. However, birds vaccinated with SDSNDV developed antibodies that were detected by western blot analysis but not by the VN or HI test. Protection from challenge was observed only in those birds that had VN or HI antibody response. That is, birds with demonstrable CMI and VN or HI antibody response were protected, whereas birds with demonstrable CMI but no VN or HI antibody response were not protected. In the second strategy, birds from SPF embryos were treated in ovo with cyclophosphamide (CY) to deplete immune cells. The birds were monitored and, at 2 wk of age, were selected for the presence of T-cell activity and the absence of B-cell activity. Birds that had a significant T-cell response, but not a B-cell response, were vaccinated with either LNDV, UVNDV, or PBS at 3 wk of age along with the corresponding CY-untreated control birds. The birds were booster vaccinated at 5 wk of age and were challenged with Texas GB strain of NDV at 6 wk of age. All birds vaccinated with LNDV or UVNDV had a specific CMI response to NDV, VN or HI NDV antibodies were detected in all CY-nontreated vaccinated birds and some of the CY-treated vaccinated birds that were found to have regenerated their B-cell function at 1 wk postbooster. The challenge results clearly revealed that CY-treated birds that had NDV-specific CMI and VN or HI antibody responses to LNDV or UVNDV were protected, as were the CY-nontreated vaccinated birds. However, birds that had NDV-specific CMI response but did not have VN or HI antibodies were not protected from challenge. The results from both strategies indicate that specific CMI to NDV by itself is not protective against virulent NDV challenge. The presence of VN or HI antibodies is necessary in providing protection from Newcastle disease.  相似文献   

16.
A dot ELISA for the detection of immunoglobulin M (IgM) antibodies to canine distemper virus (CDC) and canine parvovirus (CPV) was assessed. The titres of IgM antibodies to CDV and CPV in 100 dogs were measured by the Immunocomb ELISA kit and compared with the results derived from the immunofluorescence assay (IFA). There was a strong correlation between the results of the dot ELISA technique and the IFA (P < 0.001). The dot ELISA kit was also used to assess the changes in the levels of immunoglobulin G (IgG) and IgM antibodies to CPV and CDV in 10 puppies vaccinated with a polyvalent vaccine. High levels of IgM antibodies to CPV were first detected seven days after they were vaccinated, and after nine days all the pups had high titres of IgG antibodies to CPV. High levels of IgM antibodies to CDV were detected after nine days and the highest average titres were recorded after 12 days. IgG antibodies to CDV were present from nine days after vaccination.  相似文献   

17.
OBJECTIVE: To evaluate canarypox-vectored equine influenza virus (EIV) vaccines expressing hemagglutinins of A/equine/Kentucky/94 (vCP1529) and A2/equine/Ohio /03 (vCP2242) for induction of antibody responses against canine influenza virus (CIV) in dogs. ANIMALS: 35 dogs. PROCEDURES: Dogs were randomly allocated into 4 groups; group 1 (n = 8) and group 2 (9) were inoculated SC on days 0 and 28 with 1.0 mL (approx 10(5.7) TCID(50)) of vCP1529 and vCP2242, respectively. Dogs in group 3 (n = 9) were inoculated twice with 0.25 mL (approx 10(5.7) TCID(50)) of vCP2242 via the transdermal route. The 9 dogs of group 4 were control animals. All dogs were examined for adverse reactions. Sera, collected on days -1, 7, 13, 21, 28, 35, and 42, were tested by hemagglutination inhibition (HI) and virus neutralization (VN) assays for antibodies against CIV antigens A/Canine/FL/43/04-PR and A/Canine/NY/115809/05, respectively. RESULTS: Inoculations were tolerated well. The HI and VN antibodies were detected by 7 days after primary inoculation. Most dogs of groups 1 and 2 and all dogs of group 3 had detectable antibodies by 14 days after initial inoculation. The second inoculation induced an anamnestic response, yielding geometric mean HI titers of 139, 276, and 1,505 and VN titers of 335, 937, and 3,288 by day 42 (14 days after booster inoculation) in groups 1, 2, and 3, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Canarypox-vectored EIV vaccines induce biologically important antibodies and may substantially impact CIV transmission within a community and be of great value in protecting dogs against CIV-induced disease.  相似文献   

18.
19.
The antibody response of cattle to bovine respiratory syncytial virus (BRSV) immunization was investigated using 4 different commercially available mixed vaccines. Forty, 5-6 month old, beef calves, randomly assigned to groups of 10, were vaccinated on day 0 and 21 with 1 of 3 inactivated vaccines, (3 groups), or a modified live virus (MLV) vaccine. BRSV-specific antibody responses were measured prior to vaccination and on day 35 by using an enzyme linked immunosorbent assay (ELISA), virus neutralization assay (VN), a fusion inhibition assay (FI); and responses were also measured for their ability to facilitate antibody dependent, complement mediated cytotoxicity (ADCMC) of BRSV infected cells. Sera from day 35 were, in addition, analyzed by use of an IgG1, IgG2 isotype specific ELISA. All vaccines induced significant increases in BRSV specific IgG antibody as measured by ELISA, but only one inactivated and the MLV vaccine induced significant increases in VN titers. Fusion inhibiting antibody titers were low or undetected in calves vaccinated with the inactivated vaccines. Vaccination with modified live virus induced significantly higher titers of fusion inhibiting antibodies, which are considered to be most highly correlated with protection. The VN to ELISA and FI to ELISA ratio of the calves that received MLV vaccine were significantly greater than the calves receiving the 3 inactivated vaccines. Vaccination with MLV induced the highest IgG2/IgG1 ratio. This difference was small, and only significant relative to 2 of the inactivated vaccine groups, which were not significantly different from each other. The higher proportion of IgG2 isotype in the MLV sera was not associated with lower ADCMC, a function not attributed to this isotype. The VN and FI titers, but not the ELISA value of the sera, were most predictive of ADCMC. The inactivation processes apparently alter epitopes and affect the induction of functional antibodies.  相似文献   

20.
分别用犬细小病毒(CPV)核酸疫苗(pVCPV-VP2)、CPV重组活载体疫苗(CAV2/CPV)与CPV弱毒疫苗对犬进行了免疫试验,以检测不同CPV疫苗的免疫原性。采用CPVELISA、CPVHI与CPV微量中和试验检测免疫犬的体液免疫水平,采用淋巴细胞转化试验检测犬的细胞免疫水平。结果,pVCPV—VP2和CAV2/CPV均能诱导机体产生抗CPVELISA抗体与抗CPV中和抗体,但是pVCPV-VP2不能诱导机体产生可检测的抗CPVHI抗体,而CAV2/CPV能够诱导机体产生抗CPVHI抗体。淋巴细胞转化试验结果,pVCPV-VP2和CAV2/CPV免疫犬的外周血淋巴细胞对ConA与CPV的刺激均出现明显的增殖反应。结果表明,pVCPV—VP2和CAV2/CPV免疫犬均能诱导机体产生抗CPV的特异性体液免疫反应和细胞免疫反应,两者所表达的VP2蛋白均具有较好的免疫原性。CAV2/CPV以及pVCPV—VP2和CAV2/CPV联合免疫犬的抗CPV体液免疫水平和细胞免疫水平均比用pVCPV—VP2单独免疫犬的体液免疫水平和细胞免疫水平高。但CAV2/CPV诱导机体产生的抗CPV特异性免疫反应仍然比CPV弱毒疫苗诱导机体产生的抗CPV特异性免疫反应弱。另外,CAV2/CPV还能诱导机体产生抗CAV-2的特异性免疫反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号