首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 421 毫秒
1.
发动机燃用生物柴油的可靠性   总被引:1,自引:1,他引:0  
进行了柴油机燃用B5生物柴油的1 000 h可靠性台架试验,测量了可靠性试验前后发动机的燃油消耗、机油消耗、功率、扭矩、活塞漏气量、排气温度等参数,进行了发动机润滑油的色谱分析以及发动机的主要零部件的拆检和分析。试验结果表明:可靠性试验后发动机的燃油消耗和机油消耗均有所增加,活塞漏气量有所升高,功率、扭矩和排气温度略有下降;B5生物柴油与柴油的CO等气体排放相差不大;发动机喷油器、气门、活塞顶面等主要零件部存在积碳,活塞环与气缸套等零件磨损正常。  相似文献   

2.
共轨柴油机燃用麻疯树制生物柴油的性能及排放特性   总被引:4,自引:3,他引:1  
为系统考察柴油机燃用麻疯树制生物柴油的性能,对某共轨柴油机燃用纯柴油、纯麻疯树制生物柴油及其混合燃料的动力性、经济性和排放特性进行了试验研究,分析比较了不同生物柴油混合比例对发动机动力性、经济性、HC、CO、NOX、烟度和CO2排放特性的影响。结果表明:随着生物柴油混合比例的增加,共轨柴油机燃用柴油-麻疯树制生物柴油混合燃料后,其动力性下降,HC、CO、烟度和CO2排放降低;燃油经济性略有增加,NOX排放略有升高。  相似文献   

3.
不同掺混比例生物柴油的非常规污染物排放特性   总被引:1,自引:0,他引:1  
为了实现柴油机的清洁燃烧,需要系统研究非常规污染物的生成机理与排放特性。根据羰基类、芳香烃类物质的理化性质特点,提出了柴油机非常规污染物高效快速的测量方法,采用不同掺混比例的生物柴油进行了柴油机台架试验,探讨了不同燃料、不同工况下柴油机非常规污染物的排放特性。结果表明,二硝基苯腙采样结合高效液相色谱技术,可以实现柴油机排气中15种羰基类污染物的快速准确测定,活性炭吸附结合气相色谱-质谱联用技术可以实现芳香烃污染物的定性定量分析;中、低负荷时,生物柴油掺混比例对柴油机总羰基排放的影响不大,随着负荷的增加,BD50(生物柴油和市售0#柴油按体积比1:1配制的调合油)和BD0(纯柴油)的总羰基排放呈升高趋势,BD100(以地沟油为原料的生物柴油)的总羰基排放有所降低;BD0的单环芳香烃最大排放浓度最高,3种燃料的气相多环芳香烃排放在低负荷和高负荷工况点存在"双峰"特征,三环菲约占所有环数多环芳香烃总量的44%,燃用生物柴油可降低柴油机约32%的多环芳香烃排放。该研究为柴油机非常规污染物的排放控制提供了参考。  相似文献   

4.
甲醇、生物柴油是柴油机的含氧替代燃料,能有效降低柴油机颗粒物排放。但甲醇的十六烷值低,在柴油机上燃用会出现着火困难的问题,采用添加十六烷值改进剂的方法能有效提高柴油机燃料的着火性能。为了研究不同十六烷值改进剂对柴油机排放污染物的影响,试验选择了烷基硝酸酯、环烷基硝酸酯、醚3种十六烷值改进剂,分别添加到甲醇/生物柴油混合燃料中,考察了十六烷值改进剂对混合燃料理化特性的影响,并在186F柴油机上进行了台架试验,测量了柴油机缸内压力、排气温度、HC、CO、NOX和烟度的变化规律,分析了添加不同十六烷值改进剂时,柴油机排放污染物的变化规律。结果表明:在甲醇/生物柴油中添加十六烷值改进剂,混合燃料的压力峰值升高,滞燃期缩短,燃烧持续期延长,当改进剂的添加量相等时,添加烷基类硝酸酯混合燃料的滞燃期最短;排气温度变化不大,变动范围为?3.24%~3.45%;排放污染物中HC和CO排放升高;NOX和烟度降低,在3 000 r/min,100%负荷时,添加烷基硝酸酯、环烷基硝酸酯、醚分别使NOX降低12.90%、6.45%、3.87%,烟度降低11.76%、17.65%、38.24%。在甲醇/生物柴油混合燃料中添加十六烷值改进剂,不仅可以改善燃料的着火特性,也可以降低NOx和颗粒物排放。  相似文献   

5.
植物油黏度比较大,挥发性比较差,很难直接在柴油机上使用。该文通过对L28柴油机进行调整改进,提高喷油压力和加装燃油加热装置,进行燃用植物油的耐久性试验,考察柴油机燃烧植物油的可行性。试验过程中发现了柴油机长时间燃用植物油存在的一些问题,并对耐久试验前后的燃油消耗率、碳烟和排气温度进行了对比和分析。试验结果表明:柴油机长时间燃用植物油,会在油嘴、气门、活塞头部、气缸套顶部产生积炭;植物油渗漏污染机油;燃用植物油运行100h后,其燃油消耗率、碳烟及排气温度的变化不大。  相似文献   

6.
高原缺氧环境下生物质燃料对柴油机性能和排放的影响   总被引:5,自引:3,他引:2  
为了研究不同类别的含氧生物质燃料在高原缺氧环境下对发动机性能和排放的影响,在一台卧式双缸柴油机上分别燃用柴油、乙醇柴油E10(含10%体积分数的乙醇和90%体积分数的柴油)及生物柴油-乙醇-柴油B10E10(含10%体积分数的生物柴油,10%体积分数的乙醇和80%体积分数的柴油)3种燃料进行了对比试验。试验结果表明,在不对柴油机做任何调整的情况下,分别燃用E10和B10E10 2种含氧生物质混合燃料后,柴油机动力性下降,外特性转矩平均下降幅度分别达到4.24%和5.49%;当量燃油消耗率基本低于柴油,经济性有所改善。燃用含氧生物质燃料后,柴油机的经济性变化情况除了与燃料本身的属性相关,还与转速和负荷相关。燃用E10混合燃料后,柴油机的一氧化碳(CO)排放在低负荷时高于柴油,高负荷时低于柴油;碳氢化合物(HC)排放高于柴油水平,升高幅度范围达4.9%~27.4%;氮氧化物(NOX)排放在低负荷时低于柴油,高负荷时趋于柴油水平。燃用B10E10混合燃料后,一氧化碳(CO)和碳氢化合物(HC)排放在低负荷时都趋于柴油水平,高负荷时都低于柴油水平;氮氧化物(NOX)排放在低负荷时低于柴油,高负荷时高于柴油水平。柴油机在燃用E10和B10E10 2种混合燃料后,碳烟排放均低于柴油水平。柴油机燃用B10E10混合燃料后的碳氢化合物(HC)排放,碳烟排放以及低负荷时的一氧化碳(CO)排放均低于E10,氮氧化物(NOX)排放基本高于E10。与E10燃料相比,B10E10混合燃料在柴油机的一氧化碳(CO)和碳氢化合物(HC)以及碳烟排放方面具有更好的改善效果;但是动力性下降幅度较大,氮氧化物(NOX)排放增加。该研究可为含氧生物质燃料在高原缺氧地区的应用提供参考。  相似文献   

7.
为了探究调合生物柴油掺烧甲醇对柴油机燃烧特性及微粒粒径分布的影响,该文利用燃烧分析仪及EEPS 3090型微粒粒径测试系统研究了柴油机燃用甲醇-调合生物柴油微乳化燃料的燃烧过程及微粒数量浓度分布特性。试验结果表明,与燃用调合生物柴油相比,柴油机掺烧甲醇后缸内燃烧压力、压力升高率以及放热率曲线均后移,压力升高率峰值及放热率峰值均增加;当柴油机处于低负荷时,排气中的微粒粒径均处于6~22 nm之间,呈现核态;在高负荷时,微粒粒径处于6~275 nm之间,主要呈现积聚态,且数量浓度呈单峰正态分布。随着甲醇添加比例的增加,核态微粒比例上升,积聚态微粒比例下降,且排气中微粒的总数下降。研究结果为甲醇-生物柴油混合燃料的燃烧及微粒排放控制提供了参考。  相似文献   

8.
生物油/柴油乳化燃料的燃烧特性   总被引:3,自引:2,他引:1  
为了研究生物油/柴油乳化燃料的燃烧特性,利用非离子表面活性剂复配,对热解生物油/柴油混合液进行了乳化,测量了乳化燃料的密度、热值、动力黏度及pH值。在SD1110型柴油机台架上进行4种不同配比的生物油/柴油乳化燃料的发动机台架试验,得出了柴油机燃用生物油/柴油乳化燃料和纯柴油的负荷特性和排放特性曲线,并且对乳化燃料和纯柴油的排放特性进行了对比。研究结果表明:生物油体积分数为20%的乳化燃料当量油耗率最低,乳化燃料CO的排放高于柴油的排放,且生物油含量越高CO排放越大,而乳化燃料的NO及碳烟的排放则优于纯柴油的排放。由于生物油/柴油乳化燃料的理化特性与柴油接近,可以作为普通柴油机的燃油使用。  相似文献   

9.
为探讨棉籽油与柴油混合作柴油机代用燃料的可能性,通过试验建立了不同配比的混合油主要性能与棉籽油含量之间的数学模型,进行了发动机台架和生产试验以研究棉—柴混合油对发动机动力性、经济性、有效效率的影响,经对发动机主要零部件磨损情况进行综合分析,得出棉—柴混合油可作为柴油机代用燃料的结论。  相似文献   

10.
在单缸风冷四冲程柴油发电机上,采用0、16%、28%EGR(exhaust gas recirculation,废气再循环)率,分别以柴油和生物柴油为燃料进行了试验,测试并分析了经济性,NOx、HC、CO和烟度的排放性能。研究表明:生物柴油油耗高于柴油,在0、16%和28%EGR率时,生物柴油的体积油耗平均高出柴油约9%、10%和17%;与无废气再循环相比,16%和28%EGR率时,燃用柴油平均可减少NOx约17%和35%,燃用生物柴油平均可减少NOx约10%和24%,生物柴油的NOx排放量高于柴油平均约6.5%和17%;燃用柴油时随EGR率增大,HC的排放量增大,16%和28%EGR率时,生物柴油的HC排放低于柴油平均约6%和28.5%;28%EGR率时,生物柴油CO排放量低于柴油,平均降低约24%;随EGR率增大,生物柴油的烟度增大,燃用生物柴油在小负荷和中负荷时烟度高于柴油。  相似文献   

11.
消隙齿轮降低柴油机怠速噪声的应用研究   总被引:1,自引:0,他引:1  
柴油机噪声影响着农业机械操作者的身心健康,该文为了解决某型柴油机在怠速工况下的异响噪声问题,采用仿真与试验相结合的方法进行研究。首先,通过声强和声压测试确定了噪声的主要产生部位;然后,基于Hypermesh和Abaqus软件建立了曲轴及整机零部件的有限元模型,并通过模态试验验证了有限元模型的准确性,基于Excite软件建立了配气正时传动系统和整机的多体动力学模型,发动机整机振动计算时考虑了缸内燃气压力、正时系统及配气机构全阀系激励和活塞敲击激励。多体动力学仿真结果表明:齿轮的反向敲击出现时,齿轮工作面的接触力消失,进排气齿轮在背隙侧发生接触产生冲击力,进而造成发动机在怠速时产生"哒哒"的异响噪声;整机振动仿真结果表明:使用消隙齿轮可以消除进/排气凸轮轴齿轮的反向敲击,在1 000~2 500 Hz范围内,使得齿轮室盖和缸盖罩的振动速度级降低了7 d B左右。最后在半消声室的发动机台架上,对有无消隙齿轮的柴油机进行了振动加速度、噪声和声品质的对比试验,试验表明:怠速工况下,使用消隙齿轮后,前端发出的"哒哒"异响噪声消失,齿轮室盖振动降幅很大,前端1 m噪声声压级降低了5~9 d B(A),声品质也有了明显改善。因此,当内燃机其它齿轮传动部位出现齿轮反向敲击声时,可考虑使用消隙齿轮予以解决。  相似文献   

12.
该文分析了目前国产涡流室柴油机的机型现状,通过理论计算分析指出用一种结构参数的喷油嘴不能满足不同气缸工作容积涡流室柴油机的匹配要求,提出为优化柴油机动力性、经济性、排放、噪声及可靠性等综合性能,喷油过程必须有合理的喷油持续期,应根据柴油机循环喷油量的大小选用不同结构参数和流量的喷油嘴进行匹配试验。文中分析了针阀流通面积、针阀运动的泵吸容积、压力室容积的大小与柴油机循环喷油量的关系,以及它们对喷油过程和柴油机性能的影响。结合国内生产实际情况,给出了一个轴针式喷油嘴系列设计方案,并用试制样品初步进行了试验,试验结果表明柴油机的燃油消耗率、排气烟度明显降低,性能得到了优化提高。  相似文献   

13.
针对S195型柴油机存在主轴瓦和连杆大头轴瓦寿命不够长,飞轮一侧的主轴承座渗油和气缸垫烧蚀等问题,对气缸体进行了模态分析和受压响应分析。应用结构动力修改软件,将原有的模态参数在计算机上进行了修改设计与优化选择。新试制的气缸体经重新模态分析和受迫响应分析,刚度比原来有明显提高。投入使用后,原机存在的问题得到解决。  相似文献   

14.
为了保证4D29G31非道路用柴油机动力性、经济性以及有害物排放等满足限值要求的同时,降低燃烧噪声和降低整机噪声,该研究对缸内燃烧过程进行优化。通过对油嘴凸出量、喷油嘴孔数、喷孔直径和涡流比优化匹配,改善缸内油气混合和燃烧过程;通过对动态供油提前角的优化,缩短滞燃期,进而抑制快速燃烧期内的燃烧速率和压力振荡。各参数优化匹配后,标定工况下柴油机的最高燃烧压力和压力升高率与原机相比分别下降了18%和44.9%,整机噪声降低了0.73 dB;最大扭矩工况下柴油机的最高燃烧压力和压力升高率与原机相比分别下降了39%和40%,整机噪声降低了1.07 dB。研究可为小功率非道路用柴油机通过缸内燃烧过程优化降低噪声提供技术参考。  相似文献   

15.
柴油机起动初期控制时序的建立过程(判缸控制)直接决定其起动过程的长短,判缸控制是电控柴油机管理系统中最核心的部分。为了缩短判缸时间,提高控制系统的可靠性,该文根据目标柴油机的发火顺序设计了电控系统的转速信号与相位,采用了2套转速计算装置;基于有限状态机,提出了窗口观测联合判缸方法,并开发了电子控制单元(electronic control unit,ECU)复杂驱动层的联合判缸驱动控制软件。试验结果表明该策略是有效可行的,发动机的起动成功率提升10%,达到100%,正常起动成功的时间由1.5 s缩短到1 s以内,改善了电控柴油机的起动性能。该控制策略的实现完善了电控柴油机的时序控制功能,提高了柴油机的电控水平。  相似文献   

16.
生物柴油混合比对柴油机排放颗粒特性的影响   总被引:4,自引:4,他引:0  
为研究负荷和生物柴油对柴油机排放颗粒的影响,该文利用高分辨率透射电镜研究了电控高压共轨增压中冷柴油机在转速2000r/min、扭矩75和225N·m2种负荷下,燃用混合比为0、10%、50%和100%4种掺混比例(分别记做B0、B10、B50和B100)的黄连木籽生物柴油/柴油混合燃料时,产生排放颗粒的微观形貌和结构。结果表明,除B100产生排放颗粒中基本粒子的形状和粒径分布呈现出不规则性外,其余燃料的排放颗粒均由球形的基本粒子构成且粒径具有单分散特性;基本粒子具有多层类石墨微晶结构,碳层之间受到扭转和平移,存在无序内核区;B100在转速2000r/min、扭矩225N·m工况时的基本粒子平均粒径为45.57nm,与其余3种混合燃料排放颗粒的粒径相差很大。负荷和掺混比例在50%以内的生物柴油/柴油混合燃料对基本粒子的平均粒径影响不大。研究结果可为柴油机颗粒生成机理和后处理系统的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号