首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以蓝莓果提取液为原料,研究了12种大孔树脂对花色苷的静态吸附与解吸效果,对比了5种对花色苷分离效果较优树脂的静态等温吸附曲线,优化了最优树脂分离纯化蓝莓花色苷的工艺技术参数。研究结果表明XDA-7最适用于蓝莓花色苷的分离纯化,最佳吸附工艺是:室温条件下,蓝莓提取液pH值3.0、质量浓度0.94 g/L、流速30 mL/h,最大吸附量15.41 g/L(湿树脂);最佳洗脱工艺是:室温条件下,80%甲醇、pH值3.0、流速60 mL/h、洗脱剂量75 mL,解吸率达92.65%。在该工艺参数下,经XDA-7树脂纯化冷冻干燥所得产品为紫黑色粉末,花色苷纯度由2.20%提高到24.54%,花色苷得率为70.2%,产品色价为121。  相似文献   

2.
试验比较了3种大孔树脂对滑菇多糖的纯化效果,并研究了纯化效果最好的大孔树脂的纯化工艺。试验结果表明,AB-8大孔树脂对滑菇子实体多糖分离纯化的效果最好,而且AB-8型树脂对滑菇多糖纯化工艺为,吸附时间3h,pH值5.0,样品浓度1.5mg/mL,洗脱剂为70%乙醇溶液,解吸时间4h,洗脱速率2mL/min,在此工艺条件下纯化效果最好,即:吸附率为86.67%,解吸率为71.38%,纯化的滑菇多糖产品中多糖含量为78.64%,是滑菇多糖粗品的1.3倍。  相似文献   

3.
为了筛选最优大孔树脂,研究了大孔树脂分离纯化紫穗槐叶类黄酮的最佳工艺条件。以总纯化率为指标,在静态吸附解吸下,筛选最佳大孔树脂和溶解黄酮粗提物的乙醇浓度;在动态吸附解吸下,以单因素为基础,采用正交实验设计方法 ,研究上样质量浓度、上样流速、上样量、上样p H值、洗脱乙醇体积分数、洗脱流速对总纯化率的影响,并找到最佳工艺条件。结果表明:用10%乙醇溶解黄酮粗提物,大孔树脂D101分离纯化样品液,最佳工艺为上样质量浓度1.5 mg/m L、上样流速3 m L/min、上样量100 m L、上样p H值4、洗脱乙醇体积分数70%、洗脱流速3 m L/min,在此工艺条件下,能科学合理地分离纯化类黄酮,所得类黄酮含量为56.2%,较纯化前18.9%提高了2.9倍。  相似文献   

4.
通过对4种大孔吸附树脂吸附率及解吸率的测定,确定最佳型号树脂;通过静态和动态吸附解吸动力学研究,确定大孔树脂吸附法分离竹叶黄酮的最佳工艺条件。结果表明,AB-8型大孔树脂吸附量大,易于洗脱,纯化分离效果好。获得最佳分离纯化工艺参数为:上柱溶液pH为5.0,以1.0mL/min的吸附流速上样,用4倍床体积的60%乙醇以1.5mL/min洗脱速率洗脱。该工艺生产的竹叶黄酮纯度达到54.16%。  相似文献   

5.
研究了AB-8大孔吸附树脂纯化树莓红色素的最佳工艺条件。结果表明:在洗脱液为pH=2的95%乙醇、吸附流速为1.0BV/h、洗脱流速为0.5 BV/h条件下,分离纯化出的色素含量最大,因此为最佳的工艺条件。  相似文献   

6.
指出了采用新型XAD-2010极性大孔树脂和LX脱色树脂对林可霉素进行连续分离的方法,中间杂质可以得到有效分离。对新型XAD-2010极性大孔树脂和LX脱色树脂柱的吸附参数、解析参数进行了考察,进一步对树脂的再生方法和参数进行了优化,确定了连续树脂法分离林可霉素各项工艺参数。结果表明:极性大孔树脂XAD-2010的理论最大吸附量92~79.6 g/L,上柱吸附近饱容量在53~43 g/L,平均洗脱率98.5%。LX3#脱色树脂在酸性条件下,对酸解液的最大处理能力达到40BV以上,对浓缩液的处理能力更高。该工艺大孔树脂洗脱收率95%,脱色后收率92%,一次结晶总收率87.4%。新工艺采用活性炭、新型极性大孔树脂XAD-2010、LX弱碱性阴离子脱色树脂连续分离法可以有效分离林可霉素,有望完全替代生产上的正丁醇萃取法。  相似文献   

7.
通过静态吸附试验选择对栀子黄色素吸附效果较佳的大孔吸附树脂,然后通过动态吸附试验考察上样流速、上样浓度、洗脱剂对大孔吸附树脂分离纯化栀子黄色素的影响。结果表明,LSA-10大孔吸附树脂能高效分离纯化栀子黄色素。分离纯化条件为:上样液体积与树脂质量的比值为5∶1(mL∶g),上样流速为6mL/min,上样浓度为7mg/mL,先用水洗脱杂质和部分的栀子苷,再用浓度为20%乙醇洗脱栀子苷,最后用浓度为80%的乙醇洗脱栀子黄色素。在此条件下,得到色价为337.5,OD值为0.37的栀子黄色素产品。LSA-10大孔吸附树脂适合于高效分离纯化栀子黄色素。  相似文献   

8.
张静泽  王淑萍  白淑芳  陈虹 《沙棘》2009,22(2):32-34
【目的】研究配位吸附树脂在非水体系中对沙棘中黄酮类成分的吸附情况。【方法】通过静态吸附与解吸实验考察树脂的吸附性能,选择对黄酮类成分吸附效果最佳的配位吸附树脂,对沙棘提取液中黄酮类成分进行分离纯化;采用HPLC法测定沙棘黄酮的含量。【结果】配位吸附树脂在环己烷体系中吸附作用较好,动态吸附饱和吸附量为33.16-g/g;以5%HAc乙醇溶液为洗脱剂,消耗10BV溶剂洗脱率为93%;经过3次重复实验树脂吸附量及洗脱率基本没有变化。【结论】经配位吸附树脂吸附分离后沙棘提取物中黄酮纯度由14.93%提高到55.74%,起到纯化精制的目的。树脂不需要再生,连续使用吸附性能稳定。  相似文献   

9.
均匀设计法优选大孔树脂纯化七叶莲总皂苷工艺研究   总被引:2,自引:0,他引:2  
以总皂苷比吸附量和解吸率为指标,通过静态和动态吸附解吸附试验,从9种树脂中筛选出AB-8型大孔吸附树脂;以总皂苷收率和总皂苷纯度为指标,通过单因素试验考察了最佳洗脱剂浓度,并利用均匀设计法对大孔树脂富集纯化的工艺进行了优化.结果表明:以70%乙醇为洗脱剂,以总皂苷收率为指标,优选的工艺参数为:上样质量浓度0.976g/L、上样流速2.2mL/min、洗脱剂用量3.0BV(1BV=80mL,下同)、洗脱流速3.6mL/min,其总皂苷收率62.17%,总皂苷纯度41.22%;以总皂苷纯度为指标,优化的工艺参数为:上样质量浓度0.976g/L、上样流速2.8mL/min、洗脱剂用量0.6BV、洗脱流速0.8mL/min,其总皂苷收率41.25%,总皂苷纯度49.79%.  相似文献   

10.
杜仲叶酸性多糖提取分离及含量测定   总被引:4,自引:0,他引:4  
研究杜仲叶酸性多糖的提取分离工艺及其含量测定的简便方法.结果表明,以提取过药用有效成分后的杜仲叶为原料提取酸性多糖的较佳工艺条件是:1.0%的碱水在100 ℃下提取2次,每次2 h;提取液经大孔吸附树脂处理,多次醇沉等步骤分离的酸性多糖含量可达到41.46%.采用DNS法测定杜仲叶酸性多糖含量时水解时间控制在15~20 min,显色反应为10 min,检测波长为492 nm;在试验条件下,葡萄糖浓度在0.20~0.60 mg·mL-1范围内显色灵敏、稳定,线性关系良好;用该法测定杜仲叶渣酸性多糖含量时加样回收率为98.30%,RSD为1.76%;显色溶液在2 h内吸光度值比较稳定,能够完全满足测定工作要求,可以作为实验室测定多糖含量的简便、快捷、有效的方法.  相似文献   

11.
亚临界水提取协同大孔树脂纯化杨树芽总黄酮   总被引:4,自引:0,他引:4  
采用亚临界水提取-大孔树脂纯化联用技术对杨树芽中总黄酮进行提取、纯化,以提取温度、液料比和提取时间为考察因素,以总黄酮的得率为考察指标,采用正交试验优化亚临界水对杨树芽总黄酮的提取工艺;从4种大孔吸附树脂中筛选出对总黄酮有最佳分离纯化效果的一种树脂,研究其对总黄酮静态和动态吸咐以及解吸效果。结果表明,5 MPa下亚临界水提取杨树芽总黄酮的最佳工艺条件为:提取温度180℃、提取时间10 min、液料比30∶1(mL∶g),总黄酮的粗品提取得率为11.83%,纯度为13.16%。通过静态吸附试验筛选出最有效的HP-20树脂分离纯化杨树芽总黄酮,通过动态吸附试验确定应用HP-20树脂吸附分离杨树芽总黄酮的最佳工艺条件为:上样质量浓度为4 g/L,流速为60 mL/h,pH值为2~3,此时吸附量为42.69 g/L洗脱剂乙醇的体积分数为90%,解吸率为93.91%,经纯化后总黄酮的纯度为49.28%。  相似文献   

12.
大孔吸附树脂提甜茶苷的研究   总被引:1,自引:1,他引:0  
从6种大孔树脂中筛选了适宜的提取分离甜茶苷的吸附剂,研究了大孔吸附树脂提取甜茶苷的工艺,包括甜茶苷溶液的质量浓度、pH值和流速对吸附过程的影响,解吸剂及解吸温度对解吸过程的影响.结果表明:AB-8树脂是理想的甜茶苷吸附剂,其吸附甜茶苷较理想的工艺条件是:原料液质量浓度约为7.7mg/L,pH值约为8,流速为3BV/h(BV为层析柱中树脂床的体积);理想的洗脱条件为:流速为3BV/h,室温下以70%乙醇溶液为洗脱剂,用量为5BV,或40℃下,以60%乙醇溶液为洗脱剂,用量为4BV.实验室利用该工艺成功地分离出甜茶苷.  相似文献   

13.
为探索获得较为纯化的木麻黄总黄酮的便捷有效方法,研究了利用大孔吸附树脂分离纯化木麻黄总黄酮的工艺。结果表明:选择D101大孔吸附树脂的最佳工艺条件为吸附液料比20∶1(黄酮粗提液∶大孔吸附树脂,mL.g-1);吸附液pH为2;解吸液pH为11;最佳静置吸附时间为90 min;乙醇洗脱体积分数为80%;洗脱液料比为20∶1(80%乙醇溶液∶大孔吸附树脂,mL.g-1)。分离到的总黄酮对青枯菌具有明显的抑制作用。同时也证明了气质联用不适于鉴定黄酮类大分子物质。  相似文献   

14.
朱砂根岩白菜素纯化条件优化   总被引:2,自引:0,他引:2  
采用D101型和D103型大孔吸附树脂对朱砂根岩白菜素粗提物进行静态纯化比较试验,结果表明:D101型大孔吸附树脂作为上柱树脂对朱砂根岩白菜素粗提物的吸附和洗脱效果均优于D103型,当介质的pH值为6.5,试验温度为20℃,洗脱剂为95%乙醇时,其静态饱和吸附量为113.00±0.44mg/g,静态洗脱率为90.90±0.23g/100 g.在其他条件与静态纯化相同的情况下,当上样液浓度为13.5 mg/mL,吸附流速为1.5 mL/min,并以95%乙醇作为动态洗脱剂时,则动态吸附量为91.24 mg/g,洗脱率为90.1%.  相似文献   

15.
以皱皮柑果皮为材料,筛选出对皱皮柑果皮黄酮吸附和解吸性能好的大孔树脂,并探讨大孔树脂纯化皱皮柑果皮黄酮的工艺条件。结果表明:弱极性的AB-8大孔树脂对皱皮柑果皮黄酮的吸附和解吸效果较好。AB-8大孔树脂纯化皱皮柑果皮黄酮的最佳工艺条件为:以50%乙醇作为洗脱剂,洗脱剂流速1.5 BV/h,洗脱剂用量为3倍柱床体积。纯化后皱皮柑果皮黄酮纯度可达到15.45%。  相似文献   

16.
大孔吸附树脂分离纯化山楂叶总黄酮的研究   总被引:10,自引:3,他引:10  
比较了6种大孔吸附树脂ADS-5、ADS-8、ADS-17、NKA-9、D-101和AB-8对山楂叶总黄酮的吸附及脱附性能。在研究静态吸附的基础上,筛选出效果较好的树脂进行动态实验研究。实验结果表明:最佳分离纯化山楂叶总黄酮的树脂为D-101。该树脂室温下对山楂叶总黄酮动态吸附-脱附较优的工艺参数为:上柱液pH值4.5~5.5;上柱速度2 BV/h,溶液处理量6 BV/次;洗脱剂为70%乙醇,脱附剂的流速1 BV/h,脱附剂用量2 BV/次。  相似文献   

17.
采用AB-8大孔树脂对竹叶黄酮提取物进行纯化,考察其动态吸附-解吸动力学特性,并对AB-8大孔树脂动态柱层析的工艺条件进行优化;以上样吸附率和洗脱解吸率为检测指标,通过动态吸附实验考察上样液质量浓度、上样流速和上样体积、洗脱液体积分数、洗脱体积和洗脱流速来优选最佳工艺条件;采用NaNO2-Al(NO3)3比色法测定总黄...  相似文献   

18.
对杜仲(Eucommia ulmoides)叶片中绿原酸的提取与精制工艺进行研究,比较了酸水提取、40%乙醇提取以及纤维素酶提取对绿原酸提取效果的影响,结果表明,酶提取更有利于后续工艺对绿原酸的精制。通过静态吸附试验,比较HPD-100A、AB-8、HPD-400A、DM-130、HPD-600、HPD-826六种大孔吸附树脂对绿原酸的吸附及脱附性能,筛选出性能较好的HPD-826树脂进行动态试验,结果表明,该树脂在室温下对杜仲叶中绿原酸的动态吸附-脱附最佳工艺参数为:上柱液p H值3.0,上柱流速2 BV/h,上柱体积7 BV;脱附剂为60%乙醇,洗脱流速1BV/h,洗脱剂用量为2 BV。用优化后的工艺进行试验,所得绿原酸粗产品的纯度可达49.85%,且工艺具有良好的稳定性。  相似文献   

19.
大孔树脂对印楝素A吸附纯化的研究   总被引:3,自引:0,他引:3  
通过比较5种大孔吸附树脂对印楝素A的吸附率和解吸率,成功地筛选出比较理想的树脂。研究结果表明:XAD-1180树脂对印楝素A有较好的吸附和解吸效果。并对其动态吸附、解吸性能进行了考察,发现较佳的吸附条件为:印楝素A质量浓度2.23 mg/mL(溶剂为30%甲醇-水溶液,以下同),流速1 BV/h,饱和吸附量4.5~5 BV;解吸条件为:以50%、60%、70%的甲醇-水溶液梯度洗脱。一次提纯产品的纯度为85.14%,经过二次提纯的纯度可达93.18%。纯化产物经HPLC-MS进一步确认为印楝素A。  相似文献   

20.
对减压内部沸腾法提取壶瓶枣多糖及其脱色工艺进行了研究。以蛋白质和多糖得率为指标,通过正交试验优化得到的最佳工艺条件为:体系内温度60℃,液料比为20∶1(m L∶g),时间为30 min,此时真空度为80 k Pa,外界温度为70℃,蛋白质和多糖得率分别为0.13%和2.60%。与传统热浸提相比,其得率分别提高了18.18%和23.22%。对10种脱色材料的筛选结果表明D900型大孔吸附树脂是理想脱色材料,通过正交试验优化得到的D900型大孔吸附树脂脱色优化工艺参数为D900添加量3.5%,时间20 h,p H值11.7,温度40℃,此时脱色率、脱蛋白率和多糖保留率分别为81.94%、38.19%和87.42%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号