首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
转基因抗虫棉产量相关性状QTL的分子标记及定位   总被引:1,自引:0,他引:1  
 采用亚洲棉渐渗的纤维强度突出的陆地棉优质新品系0-153与陆地棉转基因抗虫新品系sGK9708为亲本,构建了F2及F2∶3分离群体。利用3869对SSR引物筛选亲本,得到125对多态性引物。进一步对183个F2群体单株分析得到150个多态性标记位点,其中100个标记位点连锁,构建20个连锁群,共覆盖660 cM,占棉花总基因组的14.67%,每个连锁群平均包含5个标记位点,标记间平均相距6.6 cM,其中13个连锁群确定了对应的染色体。利用F2和F2:3数据,通过复合区间作图,共检测到28个产量及相关因素的QTLs。这些控制产量性状的QTLs只存在于5个连锁群上,成簇分布。与皮棉产量性状有关的2个QTLs,均与其它多个产量相关性状的QTLs在同一个连锁区段内,增效基因遗传效应方向一致,有必要研究其在标记辅助选择中的效果。本研究没有检测到在多世代表现稳定的QTL。因此,需要培育重组自交系,进一步明确产量性状有关QTL的遗传效应。  相似文献   

2.
利用置换系检测棉花第22染色体短臂的产量相关性状QTLs   总被引:2,自引:1,他引:1  
CSB22sh为以陆地棉(Gossypium.hirsutum L.)遗传标准系TM-1为背景的第22染色体短臂被海岛棉(Gossypium.barbadense L.)Pima3-79置换的海陆置换系。TM-1与CSB22sh杂交,构建了104个F2单株的作图群体,应用6748对SSR引物对亲本进行分子标记筛选,获得90个多态性标记位点。其中85个标记位点构建了总长85.24 cM的遗传图谱,标记间平均距离1.0 cM,覆盖棉花基因组的1.8%。通过复合区间作图法对F2:3和F2:4家系的7个产量相关性状(衣分、铃重、子指、株高、第一果枝节位、单株铃数、单株果枝数)进行QTL检测,共检出28个不同QTLs,解释性状表型变异的3.5%~44.8%。仅在一个环境中检测到的QTLs有17个,2个环境同时检测到的QTLs有8个,3个环境同时检测到的QTLs有3个。不同的QTL在相同区段的成簇分布表明,控制不同性状的基因可能紧密连锁或一因多效。检测到的稳定的QTL可以用于相应性状的分子标记辅助选择。  相似文献   

3.
渐渗系IL6的遗传评价和渗入片段的鉴定   总被引:1,自引:1,他引:0  
王为 《棉花学报》2009,21(5):394-398
 用海岛棉3-79的6号染色体渐渗系(简称IL6)和背景亲本TM-1构建了F2、F2:3群体,在2年的田间重复实验中调查了18个重要农艺性状,作遗传评价。并获得F2群体的分子数据,进行QTL定位和单标记分析。结果表明:亲本IL6中的渐渗片段,组成有3-79的6号染色体,3-79的非6号染色体和大部分的TM-1片段。IL6的产量、品质性状都优于受体亲本TM-1,遗传分析也发现产量、品质性状增效基因位点来自IL6,说明所渗入片段起着关键作用。亲本农艺性状表现和遗传分析结果表明,IL6渗入片段含有总铃数、单株铃数、衣分、果枝数、比强度、麦克隆值等性状的主基因。而QTL定位和单标记分析结果显示,IL6渗入片段含有单株铃数、衣分、果枝数、株高、子指、整齐度等性状的QTLs。  相似文献   

4.
选用感丝裂病的玉米自交系R08与抗丝裂病的自交系Es40组配F2群体共348个单株,构建了包含115个SSR标记的分子遗传连锁图谱,覆盖玉米基因组2 178.6 cM,平均图距为18.9 cM。采用复合区间作图法,对F2:4家系丝裂病数据进行抗性QTL分析,共检测到12个QTL,分别位于第1、2、4、5和7染色体,贡献率为4.22%~37.95%。其中在第1、3染色体上检测到主效QTL,贡献率均大于30%,基因作用方式均为显性,其余10个QTL的作用方式多为加性或部分显性。  相似文献   

5.
陆地棉抗黄萎病、纤维品质和产量等农艺性状的QTL定位   总被引:5,自引:0,他引:5  
用一个高抗黄萎病的陆地棉品系5026和一个高感黄萎病的陆地棉品种李8为材料,构建一个RIL群体.用5 300对SSR引物筛选亲本多态,获得115个多态位点并进行标记间连锁分析,构建了一张包括20个连锁群全长560.1 cM的陆地棉品种间分子标记遗传图谱.RIL家系分两份:一份种于病圃,在苗期和成株期分别考查各家系的发病情况;一份种于大田,调查各家系的产量和纤维品质相关性状.用复合区间作图法对抗病、产量和纤维品质等性状进行QTL定位:在苗期检测到了3个抗病QTL,成株期检测到了1个抗病QTL,解释的变异系数范围是7.4%~11.8%;检测到2个纤维长度、2个纤维强度、1个纤维细度、1个整齐度、1个短纤维指数和2个纤维伸长率等9个与纤维品质相关性状的QTL,解释的变异范围是6.7%~15.7%;检测到了2个皮棉产量、1个籽棉产量、2个单株果枝数、1个单株铃数、2个铃重、1个籽指、1个衣分和1个衣指等11个产量构成因素的QTL,解释的变异方差范围是4.1%~10.6%,这些结果为棉花抗病育种同时兼顾产量和品质育种提供了非常有用的信息.  相似文献   

6.
棉花产量和纤维品质性状的遗传研究   总被引:24,自引:10,他引:14  
 采用8×8不完全双列杂交分析法,对棉花产量因素、纤维品质性状的遗传效应及其遗传相关进行了研究分析,并将遗传相关分解为加性相关和显性相关。结果表明,在棉花产量因素中,皮棉产量和单株结铃数的遗传分别以加性效应、显性效应为主,而加性效应、显性效应对铃重和衣分的控制同等重要。其中,衣分受环境变异的影响最小。所以,在F2~F3代进行选择的效果较好;在品质性状中,纤维长度、比强度及麦克隆值的遗传均以加性效应为主,受环境变异影响均较大。棉花产量因素与品质性状之间的相关普遍表现为遗传相关大于表型相关,各性状之间的表型相关、遗传相关及加性相关类似,而显性相关则不同。遗传相关特别是加性相关可以指导选择育种,而显性相关对杂种优势的利用至关重要。  相似文献   

7.
甘蓝型油菜产量及相关性状的QTL分析   总被引:11,自引:1,他引:11  
高产是甘蓝型油菜育种的重要目标之一,产量是多基因控制的数量性状。本文通过QTL作图分析了产量及其相关性状的数量性状位点,以甘蓝型油菜中油821和保604 F1代小孢子培养获得的DH系为作图群体,构建了由20个连锁群组成的,包括251个分子标记( 2个RFLP标记,72个RAPD标记,91个SSR标记,86个SRAP标记)的遗传连锁图(10个标记没有分配到连锁群中)。图谱的平均图距为6.96 cM,共覆盖油菜基因组1 746.5 cM。在此图谱基础上采取复合区间作图法,检测到与油菜产量及其相关性状有关的QTL共17个。其中控制株高的3个分别位于第4、第9和第10连锁群上,对性状的解释率为9.42%~17.58%;与分枝部位有关的4个分别位于第4、第6和第7连锁群上,其中Bp1 和Bp2 均位于第4连锁群,对性状的解释率为8.13%~15.20%;与主花序有效长有关的3个分别位于第4、第10和第16连锁群上,对性状的解释率为7.49%~23.36%;与一次有效分枝有关的2个分别位于第1、第4连锁群上,对性状的解释率为15.29%~19.58%;与角果总数和千粒重有关的分别位于第4连锁群和第9连锁群上,贡献率分别为17.42%和7.64%;与单株产量有关的3个分别位于第3、第4和第15连锁群,共解释26.60%的表型变异。部分性状的QTL在连锁群上成簇分布,对性状贡献率很大,表现主效QTLs的特点,相应的性状之间也呈显著相关,这表明一因多效或者相关的QTLs之间紧密连锁是性状相关的遗传基础。本研究中与主效QTLs连锁的标记可用于油菜产量性状的分子标记辅助选择。  相似文献   

8.
棉花分子遗传图谱构建和纤维品质性状QTL分析   总被引:8,自引:0,他引:8  
以陆地棉(Gossypium hirsutum L.)中棉所8号和海岛棉(Gossypium barbadense L.) Pima90-53组配衍生的214个单株的F2群体为材料,构建了包含110个SSR标记和65个AFLP标记的遗传连锁图谱。该图谱共包括42个连锁群,连锁群长度为4.5~147.3 cM,包括2~22个分子标记,标记间平均距离为11.6 cM,总长为2 030 cM,约占棉花全基因组的40.6%。应用复合区间作图法分析该组合的F2单株和F2:3家系纤维品质性状,共得到25个纤维品质数量性状基因座(QTL),其中5个与纤维长度相关s,分布在Chr.21、Chr.15、LG2和LG12上,可解释表型变异的10.2%~35.8%;4个与整齐度相关,分布在Chr.21、LG9、LG18和LG12上,可解释表型变异的12.6%~36.6%;7个与马克隆值相关,分布在Chr.9、LG1、LG9、LG20和LG12上,可解释表型变异的11.5%~26.1%;7个与断裂比强度相关,分布在Chr.21、Chr12、Chr.8、LG1、LG4和LG10上,可解释表型变异的16.5%~52.8%;2个与伸长率相关,分布在Chr.9和Chr.21上,可解释表型变异的18.1%和27.1%。LG9、LG12和Chr.21上存在QTL聚集区。  相似文献   

9.
鲁棉研15号纤维品质性状QTL定位研究   总被引:3,自引:3,他引:0  
 以陆地棉(Gossypium hirsutum L.)杂交种鲁棉研15号的F2群体为作图群体,利用SSR标记和JoinMap3.0软件构建遗传连锁图谱;利用复合区间作图法分别对随机组成的3个鲁棉研15号的F2:3家系亚群体进行纤维品质性状QTL定位。构建的遗传连锁图谱包含116个多态位点,25个连锁群,全长892.25 cM,覆盖棉花总基因组的20.05%,平均每个连锁群4.64个标记,标记间平均距离7.76 cM;根据已有图谱的定位结果,19个连锁群与染色体建立了联系。在3个F2:3家系亚群体中共检测到46个QTL,其中16个为纤维长度(FL)QTL、7个为纤维强度(FS)、12个为麦克隆值(FM)、6个为伸长率(FE),5个为整齐度指数(FU)。发现在Ah05、Ah08、Ah09、Dh02染色体上QTL有成簇分布的现象,并在3个亚群体中检测到一些受环境影响较小、稳定遗传的QTL。这些QTL可以在今后应用于分子标记辅助选择。  相似文献   

10.
碱胁迫下粳稻幼苗前期耐碱性的数量性状基因座检测   总被引:7,自引:0,他引:7  
以粳粳交“高产106/长白9号”F2:3代200个家系为作图群体, 在0.15% Na2CO3溶液的碱性胁迫下, 进行了水稻耐碱性鉴定, 并以SSR标记构建的分子连锁图谱为基础, 对水稻幼苗前期的根数、根长和苗高及其相对碱害率进行了数量性状基因座(QTLs)的检测。结果表明, 上述性状在F3家系群中均表现为具有1~2个峰的连续分布, 认为由主效基因和微效基因共同控制的数量性状。共检测到与碱胁迫下幼苗前期根数、根长和苗高及其相对碱害率相关的QTL 26个, 分布于第1、5、6、7、8、9和11染色体上。其中, 碱胁迫下与根数相关的QTL 4个, qRN6-1和qRN11对表型变异的解释率较大, 分别为29.91%和13.42%;与根数相对碱害率相关的QTL 5个, qRRN11-2对表型变异的解释率较大, 为23.86%;与根长相关的QTL 6个, qRRL11-2对表型变异的解释率较大, 为21.06%;与根长相对碱害率相关的QTL 2个, 但对表型变异的解释率均较低;与苗高相关的QTL 5个, qSH1和qSH11-2对表型变异的解释率较大, 分别为15.81%和16.53%;与苗高相对碱害率相关的QTL 4个, qRSH5和qRSH6-2对表型变异的解释率分别为29.89%和34.63%。而这些解释率较大的QTL所处的标记区间距离, 除qRN6-1相对较小(19.0 cM)外, 其余QTL的标记区间距离均大于26.3 cM, 需作进一步的精细定位。在所检测到的QTL中, 13个QTL的增效等位基因均来自耐碱亲本长白9号, 而其余QTL的增效等位基因来自敏碱亲本高产106;基因的主要作用方式为超显性或部分显性。  相似文献   

11.
A genetic linkage map with 70 loci (55 SSR, 12 AFLP and 3 morphological loci) was constructed using 117 F2 plants obtained from a cross between two upland cotton cultivars Yumian 1 and T586, which have relatively high levels of DNA marker polymorphism and differ remarkably in fiber-related traits. The linkage map comprised of 20 linkage groups, covering 525 cM with an average distance of 7.5 cM between two markers, or approximately 11.8% of the recombination length of the cotton genome. The present genetic linkage map was used to identify and map the quantitative trait loci (QTLs) affecting lint percentage and fiber quality traits in 117 F2:3 family lines. Sixteen QTLs for lint percentage and fiber quality traits were identified in six linkage groups by multiple interval mapping: four QTLs for lint percentage, two QTLs for fiber 2.5% span length, three QTLs for fiber length uniformity, three QTLs for fiber strength, two QTLs for fiber elongation and two QTLs for micronaire reading. The QTL controlling fiber-related traits were mainly additive, and meanwhile including dominant and overdominant. Several QTLs affecting different fiber-related traits were detected within the same chromosome region, suggesting that genes controlling fiber traits may be linked or the result of pleiotropy.  相似文献   

12.
The most widely grown tetraploid Gossypium hirsutum and G. barbadense differ greatly in yield potential and fiber quality and numerous quantitative trait loci (QTLs) have been reported. However, correspondence of QTLs between experiments and populations is poor due to limited number of markers, small population size and inaccurate phenotyping. The purpose of the present study was to map QTLs for yield, yield components and fiber quality traits using testcross progenies between a large interspecific F2 population and a commercial cotton cultivar as the tester. The results were compared to these from its F2 and F2:3 progenies. Of the 177 QTLs identified from the three populations, 65 fiber QTLs and 51 yield QTLs were unique with an average of 8–12 QTLs per traits. All the 26 chromosomes carried QTLs, but differed in the number of QTLs and the number of QTLs between fiber and yield QTLs. The congruence of QTLs identified across populations was higher (20–60 %) for traits with higher heritabilities including fiber quality, seed index and lint percentage, but lower (10–25 %) for lower heritability traits-seedcotton and lint yields. Major QTLs, QTL clusters for the same traits and QTL ‘hotspots’ for different traits were also identified. This research represents the first report using a testcross population in QTL mapping in interspecific cotton crosses and provides useful information for further comparative analysis and marker-assisted selection.  相似文献   

13.
A high-density molecular marker linkage map of cotton based entirely on polymerase chain reaction-based markers is useful for a marker-assisted breeding program. Four kinds of markers—simple sequence repeats (SSRs), sequence-related amplified polymorphism (SRAP), random amplified polymorphic DNA (RAPD), and retrotransposon-microsatellite amplified polymorphism (REMAP)—were used to assay an F2 population from a cross between “Handan208” (Gossypium hirsutum) and “Pima90” (Gossypium barbadense). Sixty-nine F2 plants were used for map construction using 834 SSRs, 437 SRAPs, 107 RAPDs, and 16 REMAPs. Linkage analysis revealed that 1,029 loci could be mapped to 26 linkage groups that extended for 5,472.3 cM, with an average distance between 2 loci of 5.32 cM. The corresponding 69 F2:3 families were grown, arranged in two replicates, and scored for eight phenotypes. Quantitative trait loci (QTL) analysis was performed by means of composite interval mapping using WinQtlCart ver 2.0. A total of 52 distinct QTLs were detected: 4 QTLs for lint index, 8 for seed index, 11 for lint yield, 4 for seed cotton yield, 9 for number of seed per boll, 3 for fiber strength, 5 for fiber length, and 8 for micronaire value. The present map and QTL analysis may provide a useful tool for breeders to transfer desirable traits from G. barbadense to the mainly cultivated species, G. hirsutum.  相似文献   

14.
陆地棉产量相关性状的QTL定位   总被引:10,自引:0,他引:10  
中棉所28和湘杂棉2号分别是以中棉所12×4133和中棉所12×8891配制而成的两个陆地棉强优势杂交种。以其F2为作图群体,筛选6000多对SSR引物,利用两群体间27个共有多态位点,通过JoinMap 3.0软件整合了一张包含245个多态位点、全长1847.81 cM的遗传图谱。利用Win QTLCart 2.5复合区间作图法分别对两群体8个产量相关性状在F2和F2:3中进行QTL定位,在中棉所28群体多环境平均值的联合分析中检测到16个QTL,三环境分离分析中检测到43个QTL;在湘杂棉2号群体分别检测到20个和66个QTL。在A3、D8、D9等染色体上有QTL成簇分布现象,同时在两个群体中发现一些不受环境影响且稳定遗传的QTL。对考察的8个性状在两个群体中发现12对共有QTL,控制果枝数、衣分和籽指的QTL增效基因位点均来源于共同亲本中棉所12。综合分析推测中棉所12的育种价值主要是通过提高后代的结铃性来实现的。研究结果为棉花产量性状的分子设计育种提供了有用的信息。  相似文献   

15.
A genetic linkage map of chromosome 6 was constructed by using 270 recombinant inbred lines originated from an upland cotton cross (Yumian 1 × T586) F2 population. The genetic map included one morphological (T1) and 18 SSR loci, covering 96.2 cM with an average distance of 5.34 cM between two markers. Based on composite interval mapping (CIM), QTL(s) affecting lint percentage, fiber length, fiber length uniformity, fiber strength and spiny bollworm resistance (Earias spp.) were identified in the t1 locus region on chromosome 6. The allele(s) originating from T586 of QTLs controlling lint percentage increased the trait phenotypic value while the alleles originating from Yumian 1 of QTLs affecting fiber length, fiber length uniformity, fiber strength and spiny bollworm resistance increased the trait phenotypic value.  相似文献   

16.
高产棉花品种泗棉3号产量及其构成因素的QTL标记和定位   总被引:10,自引:0,他引:10  
利用我国长江流域大面积种植的高衣分、高产品种泗棉3号和西班牙陆地棉栽培品种Carmen,构建RIL作图群体,在3个环境中进行产量及其构成因素的QTLs标记和定位,研究了泗棉3号高产特性的分子机理。用2 523对SSR引物,进行双亲的多态性检测,其中62对(2.46%)有多态性,它们共产生65个稳定的多态性位点。通过复合区间作图,共检测到1个单株果节数、1个铃重、2个籽指、1个衣指和1个百粒籽棉重等8个产量构成因素的QTLs。单标记分析还在多环境中检测到17个产量构成因素的QTLs。与这些QTLs紧密连锁的分子标记可以用于对产量及其构成因素的分子标记辅助选择。  相似文献   

17.
利用海岛棉染色体片段导入系定位衣分和籽指QTL   总被引:6,自引:0,他引:6  
朱亚娟  王鹏  郭旺珍  张天真 《作物学报》2010,36(8):1318-1323
以染色体片段导入系IL-15-5和IL-15-5-1构建的F2和F2:3分离群体,利用SSR标记对数量性状衣分和籽指QTL进行了定位。应用复合区间作图法分析两个组合的774个F2单株和F2:3家系衣分和籽指,检测到2个衣分的QTL,1个籽指的QTL。衣分QTLqLP-15-1在两世代中都被检测到,位于相同的分子标记置信区间JESPR152~NAU3040,置信的遗传距离分别为5.40cM和3.20cM;qLP-15-2只在F2:3中被检测到,位于分子标记NAU5302~NAU2901之间,置信的遗传距离为0.08cM。籽指QTLqSI-15-1在F2和F2:3中都被检测到,分别位于分子标记NAU2814~NAU3040和JESPR152~NAU3040,置信的遗传距离分别为6.70cM和5.70cM。利用染色体片段导入系能准确地定位产量组分的QTL,为棉花产量的分子设计育种奠定基础。  相似文献   

18.
Fiber yield and yield components – including lint index (LI), seed index (SI), lint yield (LY), seed cotton yield (SCY) and number of seeds per boll (NSPB) – were investigated on the farm of Huazhong Agricultural University in a population of 69 F2 individuals and corresponding F2:3 families derived from a cross between high-fiber-yield Gossypium hirsutum CV Handan 208 and a low-fiber-yield Gossypium barbadense CV Pima 90. On the basis of the genetic map constructed previously from the same population by Lin et al. (Plant Breed., 2005), quantitative trait locus (QTL) analysis was performed with the software QTL Cartographer V2.0 using composite interval mapping method (LOD ≥ 3.0). A total of 21 QTLs were identified, which were located in 15 linkage groups. The number of QTLs per trait ranged from one to seven. Of these QTLs detected, one affecting LI explained 24.3% of phenotypic variation (PV), five influencing SI explained 16.15–39.21% of PV, seven controlling LY explained 13.01–28.35% of PV, and two controlling SCY explained 22.76 and 39.97% of PV, respectively. Simultaneously, the detected six QTLs for NSPB were located on five linkage groups, which individually explained 28.01–38.32% of the total phenotypic variation. The results would give breeders further insight into the genetic basis of fiber yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号