首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
【目的】 为实现果园自然场景下智能农业机器人对桃花的准确、快速、有效检测。【方法】 文章采用相机获取桃花图片数据,通过LabelImg软件进行人工标记建立桃花目标识别的检测样本数据集,训练Darknet深度学习框架下的YOLO v4模型对桃花进行识别。【结果】 模型精度评估表明,YOLO v4模型的平均准确率MAP值(86%)比Faster R-CNN的MAP值(51%)高出35%。【结论】 YOLO v4与经典的算法相比,对各种自然环境下的桃花检测具有较好的实时性和鲁棒性,可为精准识别桃花提供重要参考价值,桃花精准识别为疏花疏果作业奠定了基础。  相似文献   

2.
[目的]基于Faster R-CNN模型对不同成熟度蓝莓果实进行精准识别分类,为浆果类果实的自动化采摘、产量预估等提供技术支撑.[方法]选取成熟果、半成熟果、未成熟果剪切图像各4000幅和8000幅背景图像作为训练集,1000幅原始图像用于验证集开展试验,改进Faster R-CNN算法,设计一种对背景干扰、果实遮挡等因素具有良好鲁棒性和准确率的蓝莓果实识别模型,模型通过卷积神经网络(CNN)、区域候选网络(RPN)、感兴趣区域池化(ROI Pool-ing)和分类网络来实现蓝莓图像背景消除及果实识别并与DPM算法进行对比.[结果]以WOA算法优化的训练参数作为参考,在蓝莓数据集上训练网络模型.在分析P-R曲线后计算F发现,Faster R-CNN算法在成熟果、半成熟果和未成熟果上的F值分别为95.48%、95.59%和94.70%,与DPM算法相比平均高10.00%.在对3类蓝莓果实的识别精度方面,Faster R-CNN同样有着优秀的识别效果.对成熟果、半成熟果和未成熟果的识别准确率分别为97.00%、95.00%和92.00%,平均识别准确率为94.67%,比DPM算法高20.00%左右.该网络模型在高精度的识别效果下,对于蓝莓果实的平均识别速度依然达0.25 s/幅,能满足实时在线识别的需求.[建议]获取多角度、复杂环境下的图像用来提高模型识别率;利用迁移学习建立蓝莓识别模型;数据集样本扩充并分类.  相似文献   

3.
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。  相似文献   

4.
为了实现复杂背景下绝缘子的快速、准确识别,提出了基于卷积神经网络的绝缘子目标识别方法。该方法通过公开数据集ImageNet预训练VGGNet,并将VGGNet作为特征提取网络,预训练后用其参数初始化Faster R-CNN,通过绝缘子数据集再训练,最终用来识别绝缘子目标。此外,为了探究不同卷积网络和不同算法对试验结果的影响,除上述VGGNet和Faster R-CNN以外,还使用了AlexNet和Fast R-CNN来进行对比试验,即对比Fast R-CNN+VGGNet、Faster R-CNN+VGGNet、Faster R-CNN+AlexNet这3种网络。测试结果表明:在使用相同特征网络VGGNet时,Faster R-CNN的各项测试指标均优于Fast R-CNN,在使用相同算法Faster R-CNN时,VGGNet网络的检测指标较为理想,但识别速度稍慢于AlexNet网络。3种网络都能够达到绝缘子目标识别的目的,精确度依次为87.23%、96.66%、93.34%,召回率依次为59.42%、84.06%、49.28%,平均识别时间依次为8.48,2.70,1.40s。观察试验可知,相比其他两种算法Faster R-CNN+VGGNet检测结果较为理想,其精确度分别高出9.43%和3.32%,召回率分别高出24.64%和34.78%,说明该方法可对复杂背景下的绝缘子进行有效识别。  相似文献   

5.
基于深度学习和无人机遥感技术的玉米雄穗检测研究   总被引:1,自引:0,他引:1  
【目的】玉米雄穗在玉米的生长过程和最终产量中起关键作用,使用无人机采集玉米抽穗期的RGB图像,研究不同的目标检测算法,构建适用于无人机智能检测玉米雄穗的模型,自动计算图像中雄穗的个数。【方法】使用无人飞行器(UAV)在25 m飞行高度下获得大量玉米抽穗时期的RGB图像,裁剪并标注出图像中玉米雄穗的位置和大小,训练数据和测试数据按照3:1的比例划分数据集;在深度学习框架MXNet下,利用这些数据集,分别训练基于ResNet50的Faster R-CNN、基于ResNet50的SSD、基于mobilenet的SSD和YOLOv3等4种模型,对比4种模型的准确率、检测速度和模型大小。【结果】使用无人机采集了236张图像,裁剪成1 024×1 024大小的图片,去除成像质量差的图像,利用标注软件labelme获得100张标注的玉米雄穗数据集;最终得到4个模型的mAP值分别为0.73、0.49、0.58和0.72。在测试数据集上进行测试,Faster R-CNN模型的准确率最高为93.79%,YOLOv3的准确率最低,仅有20.04%,基于ResNet50的SSD和基于mobilenet的SSD分别为89.9%和89.6%。在识别的速度上,SSD_mobilenet最快(8.9 samples·s-1), Faster R-CNN最慢(2.6 samples·s-1), YOLOv3检测速度为3.47samples·s-1, SDD_ResNet50检测速度为7.4 samples·s-1。在模型大小上,YOLO v3的模型最大,为241 Mb, SSD_mobilenet的模型最小,为55.519 Mb。【结论】由于无人机的机载平台计算资源稀缺,综合模型的速度、准确率和模型大小考虑,SSD_mobilenet最适于部署在无人机机载系统上用于玉米雄穗的检测。  相似文献   

6.
【目的】研究基于改进Mask R-CNN的玉米苗冠层分割算法,满足精准作业中对靶施肥的识别要求,提高化肥的使用效率,减少环境污染。【方法】采集田间玉米苗图片并增强数据,生成田间数据集;使用ResNeXt50/101-FPN作为特征提取网络对分割算法进行训练,并与原始ResNet50/101-FPN的训练精度结果作对比;采用不同光照强度及有伴生杂草的玉米苗图片对比验证冠层识别算法效果。【结果】在不同光照强度下,无伴生杂草的目标平均识别精度高于95.5%,分割精度达98.1%;在有伴生杂草与玉米苗有交叉重合情况下,目标平均识别精度高于94.7%,分割精度达97.9%。检测一帧图像的平均时间为0.11 s。【结论】Mask R-CNN的玉米苗及株芯检测算法有更高的准确率和分割精度,更能适应不同光照强度及有伴生杂草的苗草交叉重合情况的目标检测。  相似文献   

7.
【目的】研究基于区域卷积神经网络(R-CNN)模型的广西柑橘病虫害识别方法,为提高柑橘重要病症分类和病理检测效率提供参考依据。【方法】设计专用R-CNN模型,采用多层神经网络,通过机器学习算法和神经网络对柑橘黄龙病、红蜘蛛感染和溃疡病等广西柑橘主要病症特征图像进行识别,分析其准确率和空间复杂度。【结果】R-CNN模型对广西柑橘黄龙病的平均识别准确率为95.30%,对红蜘蛛感染的平均识别准确率为90.30%,对溃疡病的平均识别准确率为99.10%,均优于传统机器学习方法中支持向量机算法(SVM)的平均识别准确率(分别为93.20%、88.20%和95.20%),分类效果也优于小型神经网络模型如视觉几何组网络(VGG-19)模型,平均识别准确率分别提高4.25%、4.62%和2.55%。R-CNN模型在较少神经元参数(33层卷积网络)情况下,空间复杂度比SVM和VGG-19模型低,能获得更佳的柑橘黄龙病、红蜘蛛感染和溃疡病识别效果。【结论】R-CNN模型识别是一种对柑橘黄龙病、红蜘蛛感染和溃疡病行之有效的鉴别方法,可在广西柑橘果园大量部署和应用。  相似文献   

8.
目的 引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。方法 在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1 150幅,人工标注后对原始图像进行离线数据增强扩充;对Faster R-CNN算法进行适应性改进,在卷积层加入批标准化处理层,引入中心代价函数构建混合代价函数,提高相似病斑的识别精度;采用随机梯度下降算法优化训练模型,分别选取4种预训练的卷积结构作为Faster R-CNN的特征提取网络进行训练,并测试得到最优特征提取网络,利用训练好的模型选取不同天气条件下的测试集进行对比,并将改进Faster R-CNN与未改进的Faster R-CNN和SSD算法进行对比试验。结果 在改进Faster R-CNN病害识别框架中,以VGG16卷积层结构作为特征提取网络具有更出色的性能,利用测试集图像检验模型,识别结果的平均精度为 0.971 8,平均召回率为0.971 9,F1为0.971 8,总体平均准确率可达97.23%;晴天的图像识别效果优于阴天的。改进Faster R-CNN算法与未改进的Faster R-CNN算法相比,平均精度高0.088 6,单张图像检测耗时减少0.139 s;与SSD算法相比,平均精度高0.0425,单张图像检测耗时减少0.018 s,表明在大田环境中具有复杂背景的玉米病害智能检测领域,改进Faster R-CNN算法综合性能优于未改进的Faster R-CNN算法和SSD算法。结论 将改进后的Faster R-CNN算法引入田间复杂条件下的玉米病害智能诊断是可行的,具有较高的准确率和较快的检测速度,能够避免传统人工识别的主观性,该方法为田间玉米病害的及时精准防控提供了依据。  相似文献   

9.
基于深度学习的苹果树侧视图果实识别   总被引:3,自引:2,他引:1  
【目的】传统果树侧面果实识别方法精度难以满足实际果实识别的需求,研究深度学习方法对提高苹果树侧面果实识别精度、增强模型对苹果复杂生长环境的适应性和泛化性具有重要意义。【方法】文章提出基于深度卷积神经网络对广域复杂背景环境下的侧面苹果特征进行学习的方法,完成苹果树侧面果实多目标识别任务。【结果】在广域复杂场景下,基于VGG16为特征提取网络的Faster-RCNN多目标检测模型在果实多目标检测任务中,识别精度达到91%,单幅影像识别时间约为1.4 s,相较于ResNet50作为特征提取层的目标检测模型识别精度提高4%;在相同影像数据下,模型识别精度的主要影响因素是遮挡,导致模型漏判果实数量较多,VGG16在不同程度遮挡区域的漏判率比ResNet低6%。【结论】基于VGG16卷积神经网络果树侧视图果实识别算法对广域复杂场景下的果实提取效果较好,特别是在具有遮挡情况下的识别结果更优,能够为果园产量估算提供一定的借鉴。  相似文献   

10.
【目的】为解决传统天麻表面破损主要依靠人工检测的问题,提出将残差神经网络模型(Faster R-CNN ResNet101)检测方法应用到天麻表面破损识别中,以期取得较好的识别效果。【方法】以腐烂、霉变、机械损伤和完好等4类天麻为研究对象,在卷积神经网络和区域候选网络的基础上构建模型,然后在tensorflow框架上实现模型检测,最后对比分析结果。【结果】天麻表面破损检测模型利用Faster R-CNN ResNet101网络中的输入卷积层以及4个卷积组进行特征提取,区域候选网络生成天麻表面破损的初步位置候选框,实现候选框的分类和定位,其识别率达95.14%,且查准率为0.94,召回率为0.92。与SSD (Single Shot multibox Detector)、Faster_rcnn_inception和Rfcn_resnet101等3种神经网络识别方法对比,识别率分别提高了13.02%、10.69%和12.02%。【结论】该模型具有泛化能力强、准确率较高和鲁棒性较好等特点,为农产品的识别研究提供了参考和借鉴。  相似文献   

11.
针对多种树形果园环境下,由于树冠背景复杂导致的树冠分割、检测及树形识别困难的问题,本研究提出了1种改进Mask R-CNN的B-Mask R-CNN检测模型,实现自然复杂环境下的果树树冠检测与树形识别。该模型引入了IoU(Intersection over Union)平衡采样,提高了模型的训练效果;其次,在边界框损失中引入平衡L1损失,使得多分类损失与边界框损失更快地收敛;另外,在区域推荐网络中调整锚框比例适应数据集中的目标,提升了模型准确率。该研究搜集矮化密植形、小冠疏层形、自然开心形、自然圆头形以及Y形5种常见修剪树形制作数据集,应用5个检测模型进行对比试验。试验结果表明,B-Mask R-CNN检测模型平均检测精度达到98.7%,与Mask R-CNN、Faster R-CNN、U-Net以及K-means模型相比检测精度更高,对复杂背景下的树形识别具有更好的鲁棒性,能够为后续精准喷施中喷施模式和控制参数的分析及应用奠定基础。  相似文献   

12.
为解决烟叶智能分级识别中需对多片散放烟叶同步进行部位识别的问题,提出一种基于改进Mask R–CNN的多片烟叶的部位同步识别方法:在Mask R–CNN区域建议网络中引入K–means聚类算法,对已标注目标检测框进行聚类,实现对预设的5种尺度的锚点尺寸和3种比例的锚点长宽比的优化,使其更加符合烟叶图像数据的分布特性,达到提高生成建议框的精确性、缩短识别时间的目的。基于采集的烟叶图像数据集,验证改进Mask R–CNN方法的有效性。结果表明,当IoU为0.5时,改进MaskR–CNN单样本耗时313ms,比MaskR–CNN的326ms快,在测试集上的均值平均精度(mAP)提高了3.56%。与FasterR–CNN和SSD目标检测算法相比,在准确率和召回率上也表现出优势。  相似文献   

13.
目的 提高杂交稻种子活力分级检测精度和速度。方法 提出了一种基于YOLOv5改进模型(YOLOv5-I)的杂交稻芽种快速分级检测方法,该方法引入SE (Squeeze-and-excitation)注意力机制模块以提高目标通道的特征提取能力,并采用CIoU损失函数策略以提高模型的收敛速度。结果 YOLOv5-I算法能有效实现杂交稻芽种快速分级检测,检测精度和准确率高,检测速度快。在测试集上,YOLOv5-I算法目标检测的平均精度为97.52%,平均检测时间为3.745 ms,模型占用内存空间小,仅为13.7 MB;YOLOv5-I算法的检测精度和速度均优于YOLOv5s、Faster-RCNN、YOLOv4和SSD模型。结论 YOLOv5-I算法优于现有的算法,提升了检测精度和速度,能够满足杂交稻芽种分级检测的实用要求。  相似文献   

14.
目的 针对传统奶牛养殖中采用人工识别奶牛个体的方法效率低且主观性强的问题,提出一种基于改进Mask R-CNN的奶牛个体识别方法。方法 该方法对Mask R-CNN中的特征提取网络结构进行优化,采用嵌入SE block的ResNet-50网络作为Backbone,通过加权策略对图像通道进行筛选以提高特征利用率;针对实例分割时目标边缘定位不准确的问题,引入IoU boundary loss构建新的Mask损失函数,以提高边界检测的精度;对3000张奶牛图像进行训练、验证和测试。结果 改进Mask R-CNN模型的精度均值(AP)达100%,IoUMask达91.34%;与原始Mask R-CNN模型相比,AP提高了3.28%,IoUMask提高了5.92%。结论 本文所提方法具备良好的目标检测能力,可为复杂农场环境下的奶牛个体精准识别提供参考。  相似文献   

15.
为提高复杂背景下立木图像的识别准确率,提出近似联合训练的Faster R-CNN对立木图像进行目标提取并分类。首先迁移ImageNet上的模型VGG16、ResNet101和MobileNetV2提取图像特征并微调网络,然后构建新的数据集包括7科10种立木图像共2 304张,通过该数据集训练和测试3种网络模型下的Faster R-CNN。结果表明,通过近似联合训练的Faster R-CNN得到的均值平均精度分别是93.64%、92.38%、92.58%,对于不同种属的立木,VGG16网络效果最佳。由于光照会对图像识别造成影响,将光照平衡前后的结果作对比,得到光照平衡后的立木图像识别结果优于平衡前。并利用训练的模型对斜向生长的立木图片进行检测,结果显示生长方向不影响图像识别准确率。证明该方法在具有复杂背景的立木图像上具有良好的效果,对更多立木的识别有一定的参考价值。  相似文献   

16.
鉴于对大豆叶片虫洞进行识别有助于及时发现虫情并有针对性的防治虫害,提出了一种大豆叶片虫洞的识别方法:以YOLO v5s网络作为基础,在大豆叶片虫洞特征提取过程中引入空洞卷积代替3次池化处理,提取虫洞边缘不规则信息;将特征信息输入空间注意力机制,提取时空融合信息,进而捕获野外不同背景下的颜色信息;针对大豆叶片虫洞目标远近不一的问题,重构特征金字塔结构,增加了1层输出层,将80像素×80像素输出特征图经过上采样后得到160像素×160像素特征图,并将其与浅层同尺寸特征图进行拼接,提高虫洞目标识别定位的准确性;将融合后的总特征输入目标检测模块,输出单个对象的检测外框,得到大豆叶片虫洞识别模型。在大豆叶片虫洞样本数据集上对模型进行测试,结果对大豆叶片虫洞的平均识别准确率最高达95.24%,模型存储空间为15.1 MB,每秒传输91帧。所建立的方法与Faster R–CNN、YOLO v3、YOLO v5s对比,对大豆叶片虫洞识别的平均准确率分别提高2.50%、12.13%、2.81%。  相似文献   

17.
根据香蕉各叶龄期叶片、假茎、球茎等有关性状变化,将香蕉抽蕾前植株的生育进程按叶龄分成两个阶段,即叶龄余数大于10为营养生长阶段,叶龄余数10~0为果穗分化阶段。两个阶段可以进一步细分为:营养生长前期(叶龄余数≥20),营养生长中期(叶龄余数19~15),营养生长后期(叶龄余数14~11),花孕育期与花序分化期(叶龄余数10~7),花器各原基分化与发育期(叶龄余数6~1),孕蕾期(叶龄余数0)。叶片红褐斑的出现与消失、吸芽的发生、球茎膨大与一定的叶龄同伸或同步;香蕉果穗分化与密层叶的出现、叶柄摺扇形排列、叶顶端皱褶的出现等具有一定的同伸性或同步性。  相似文献   

18.
Koirala  A.  Walsh  K. B.  Wang  Z.  McCarthy  C. 《Precision Agriculture》2019,20(6):1107-1135

The performance of six existing deep learning architectures were compared for the task of detection of mango fruit in images of tree canopies. Images of trees (n?=?1 515) from across five orchards were acquired at night using a 5 Mega-pixel RGB digital camera and 720 W of LED flood lighting in a rig mounted on a farm utility vehicle operating at 6 km/h. The two stage deep learning architectures of Faster R-CNN(VGG) and Faster R-CNN(ZF), and the single stage techniques YOLOv3, YOLOv2, YOLOv2(tiny) and SSD were trained both with original resolution and 512?×?512 pixel versions of 1 300 training tiles, while YOLOv3 was run only with 512?×?512 pixel images, giving a total of eleven models. A new architecture was also developed, based on features of YOLOv3 and YOLOv2(tiny), on the design criteria of accuracy and speed for the current application. This architecture, termed ‘MangoYOLO’, was trained using: (i) the 1 300 tile training set, (ii) the COCO dataset before training on the mango training set, and (iii) a daytime image training set of a previous publication, to create the MangoYOLO models ‘s’, ‘pt’ and ‘bu’, respectively. Average Precision plateaued with use of around 400 training tiles. MangoYOLO(pt) achieved a F1 score of 0.968 and Average Precision of 0.983 on a test set independent of the training set, outperforming other algorithms, with a detection speed of 8 ms per 512?×?512 pixel image tile while using just 833 Mb GPU memory per image (on a NVIDIA GeForce GTX 1070 Ti GPU) used for in-field application. The MangoYOLO model also outperformed other models in processing of full images, requiring just 70 ms per image (2 048?×?2 048 pixels) (i.e., capable of processing?~?14 fps) with use of 4 417 Mb of GPU memory. The model was robust in use with images of other orchards, cultivars and lighting conditions. MangoYOLO(bu) achieved a F1 score of 0.89 on a day-time mango image dataset. With use of a correction factor estimated from the ratio of human count of fruit in images of the two sides of sample trees per orchard and a hand harvest count of all fruit on those trees, MangoYOLO(pt) achieved orchard fruit load estimates of between 4.6 and 15.2% of packhouse fruit counts for the five orchards considered. The labelled images (1 300 training, 130 validation and 300 test) of this study are available for comparative studies.

  相似文献   

19.
目的利用红外自动感应相机对野生动物进行图像监测是对野生动物保护管理的有效手段,为了解决野外复杂背景环境导致的野生动物监测图像自动识别准确率低的问题,提出一种基于感兴趣区域(ROI)与卷积神经网络(CNN)的野生动物物种自动识别方法。方法以红外自动感应相机在内蒙古赛罕乌拉国家自然保护区内拍摄的马鹿、斑羚、猞猁、狍和野猪这5种国家级陆生保护动物的图像为实验样本,采用基于回归算法的目标检测方法,对监测图像中野生动物区域进行检测并分割,生成ROI图像,减少复杂背景信息对物种识别的干扰;利用裁剪、仿射变换等方式对样本数据进行扩充;构建基于全局-局部的VGG16双通道网络模型对样本图像进行训练,最后接入分类器输出物种识别结果。同时,构建了基于VGG19的双通道网络模型对样本图像进行训练,并与本研究训练结果进行比较;另外,将样本图像分别输入本研究算法与VGG16、R-CNN、Fast R-CNN算法进行训练,对比不同算法下的识别效果。结果利用本研究模型对样本图像进行训练时,测试集的平均识别精度均值MAP达到0.912,相对于VGG19结构下的训练模型和VGG16、R-CNN、Fast R-CNN,得到了更高的MAP值。结论相比于其他算法,本研究提出的物种识别模型更适合于复杂背景下的野生动物监测图像的物种识别,可以得到更高的MAP值与更优的识别效果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号