首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
中国猪源HSN1和H9N2亚型流感病毒的分离鉴定   总被引:41,自引:5,他引:41  
猪是禽流感病毒"禽-猪-人"传播链中重要的中间宿主,了解猪流感的疫情动态将为动物流感及人流感的疾病预测及防制提供重要依据.1999~2001年间进行的血清学和病毒学监测发现我国猪群存在大范围的H1和H3亚型猪流感感染(李海燕等,2002).2002~2003年,我们进一步对来自全国14个省市的1936份血清进行了H9亚型猪流感的检测,同时在广东、福建等省进行了H5亚型猪流感的检测.2002年辽宁、广东、山东及重庆猪血清中出现H9亚型流感抗体,阳性率分别为7.3%、6.8%、5.1%和1.6%.2003年采集的猪血清H9亚型流感抗体均为阴性,同时发现广东、福建两省2003年出现H5亚型流感阳性猪群,阳性率分别为4.7%和8.2%.从2001~2003年收集和送检的样品中分离鉴定了6株H9N2亚型和2株H5N1亚型猪流感病毒,部分序列分析发现H9和H5亚型猪流感病毒均与我国分离的禽流感病毒高度同源.本研究进一步确证了我国猪群中存在H9N2亚型流感病毒,并且首次发现我国猪群已出现H5N1亚型流感病毒,为人类流感及动物流感的防制敲响了警钟.对这两个亚型流感病毒所具有的公共卫生和兽医公共卫生危害性应予以高度重视.  相似文献   

2.
上海市猪群中猪流感病毒优势亚型的血清学调查   总被引:1,自引:0,他引:1  
为了解当前本市猪群中猪流感病毒的优势亚型,摸清病毒感染现状和规律,对2011年上海市46个场户的723份猪血清应用血凝抑制试验(HI)和酶联免疫吸附试验(ELISA)进行了检测。结果显示:本地猪群中猪流感病毒的H1亚型为优势亚型,H3亚型病毒感染率较低,被检场户流感病毒抗体的场阳性率为1.25%~100%,样品阳性率为1.3%~74.7%。提示:猪群对H1、H3亚型流感易感,种猪的感染程度明显高于肉猪,未检测到H5、H9亚型流感病毒抗体。  相似文献   

3.
采用血凝抑制试验对河南省新乡、焦作、漯河等地采集的139份猪血清样品进行了猪流感病毒H1、H3、H5、H9亚型抗体的检测.结果显示,在被调查的139份血清中,H1亚型SIV抗体阳性率为43.17%,H3亚型SIV抗体阳性率为0,H5亚型SIV抗体阳性率为2.16%.H9亚型SIV抗体阳性率为1.44%:H1+H5亚型SIV抗体阳性率为1.44%;H1+H9亚型SIV抗体阳性率为1.44%:H1+H5+H9亚型SIV抗体阳性率为0.表明在所调查的猪群中,猪流感病毒的感染较为普遍,大部分猪场都曾被H1亚型感染,部分猪群有多种亚型混合感染存在.  相似文献   

4.
采用血凝抑制试验对河南省新乡、焦作、漯河等地采集的139份猪血清样品进行了猪流感病毒H1、H3、H5、H9亚型抗体的检测。结果显示,在被调查的139份血清中,H1亚型SIV抗体阳性率为43.17%,H3亚型SIV抗体阳性率为0,H5亚型SIV抗体阳性率为2.16%,H9亚型SIV抗体阳性率为1.44%;H1+H5亚型SIV抗体阳性率为1.44%:H1+H9亚型SIV抗体阳性率为1.44%;H1+H5+H9亚型SIV抗体阳性率为0。表明在所调查的猪群中,猪流感病毒的感染较为普遍,大部分猪场都曾被H1亚型感染,部分猪群有多种亚型混合感染存在。  相似文献   

5.
广东云浮部分猪场猪流感血清学调查与分析   总被引:3,自引:0,他引:3  
从广东云浮市猪场采集39个猪场种公猪、后备和经产母猪血清1506份,用微量血球凝集抑制(HI)试验监测H1、H3、H5、H9亚型猪流感抗体。结果表明:所监测猪场大部分猪群存在H1亚型猪流感抗体,场阳性率为71.79%(28/39),猪群血清抗体阳性率在22.2~100%之间,总阳性率为59.07%(890/1506);部分猪群存在H3亚型猪流感抗体,场阳性率为74.35%(29/39),猪群血清抗体阳性率在5~100%之间,总阳性率为67.75%(1020/1506);未监测到H5、H9亚型猪流感抗体的存在。  相似文献   

6.
目前,全球范围内流行的猪流感病毒亚型主要有3种:H1N1、H3N2、H1N2,此外,H1N7、H4N6、H9N2、H5N1、H3N3、H3N1和H2N3等亚型病毒也在猪体内分离到,但没有证据显示这些病毒在猪体内建立稳定的谱系。为了解我国屠宰场猪群中流感病毒的感染与流行情况,选取2009年甲型H1N1(pdm/09)、欧洲类禽H1N1(EA H1)、经典H1N1(经典H1)、新型三源重排H1N1(ReH1)、H3N2(H3)、H9N2(H9)流感病毒制备的血凝抑制(HI)标准抗原作为检测抗原,对全国25个屠宰场的猪血清进行了HI抗体的检测。结果显示,2016年我国屠宰场样品中,pdm/09、EA H1、经典H1、Re H1、H3、H9抗体阳性率分别为23.18%、28.12%、19.34%、24.97%、7%、7.41%;在所监测地区中,华南地区屠宰场猪流感血清平均抗体阳性率最高。结果表明,2016年我国屠宰场猪群中H1N1亚型猪流感病毒感染比较普遍,H3N2和H9N2亚型猪流感病毒抗体阳性率较低。  相似文献   

7.
为了解广西猪群中猪流感(SI)的流行情况,以猪流感病毒H3N2亚型作为诊断抗原,采用微量血凝抑制试验(HI)方法,对广西部分市(县)的猪群进行猪流感的血清学调查.在12个市(县)采集的1000份血清中,有10个市(县)检出H3N2抗体,共有257份血清呈H3N2抗体阳性,平均阳性率为25.7%.百色的阳性率最高,达到82.9%,贵港和南宁市郊两地没有检出阳性,其它9个市(县)的阳性率在13.0%~45.7%之间.结果表明我区猪群中很可能存在H3N2亚型猪流感感染,其中百色地区猪流感的感染率比较高.  相似文献   

8.
为了对供港猪群中的猪流感流行情况进行分析,从华南地区供港猪群中用无菌棉拭子采集鼻腔粘液样品,采用鸡胚接种方法,从供港猪群中分离出了2株不同亚型的猪流感病毒株,经国家流感中心鉴定分别为H1N1和H3N2亚型。本研究设计了猪流感常见亚型的HA和NA分型特异性引物,建立了猪流感型特异性RT-PCR检测方法;对分离鉴定的2株猪流感病毒和禽流感H5N1 HI检测抗原进行了RT-PCR检测,并对其部分HA和NA基因进行克隆测序分析。对供港猪群的血清检测结果表明:供港猪群中H1N1和H3N2亚型抗体阳性率分别为26.87%、38.26%,禽流感H5N1和H9N2亚型抗体阳性率均为0%。  相似文献   

9.
部分猪场H1和H3亚型猪流感的血清学调查   总被引:1,自引:0,他引:1  
为了解中国部分省市规模化猪场H1和H3亚型猪流感病毒的流行情况,采用血凝抑制试验对采集于广东、湖南、河南省12个市县28个规模化猪场的799份血清进行H1和H3亚型猪流感病毒的抗体检测。结果表明,H1亚型抗体阳性率在0~83.33%之间,猪抗体总阳性率为46.18%(369/799),猪场阳性率为89.29%(25/28)。H3亚型抗体阳性率在0~100.00%之间,猪抗体总阳性率为61.33%(490/799),猪场阳性率为85.71%(24/28)。广东、湖南和河南地区H1亚型抗体阳性率分别为48.91%、40.26%和50.67%,H3亚型抗体阳性率分别为58.55%、70.78%和78.67%。在被调查的上述3个地区的猪群中,H1和H3亚型猪流感病毒的感染较为普遍,其中H3亚型感染率高于H1亚型,且各地区猪流感病毒的流行情况存在地域性差异。  相似文献   

10.
广东部分规模猪场猪流感血清学监测结果与分析   总被引:10,自引:1,他引:10  
从广东省9市17县采集28个规模猪场种公猪、后备和经产母猪血清627份,用微量血球凝集抑制(HI)试验监测H1、H3、H5、H9亚型猪流感抗体。结果表明:所监测猪场大部分猪群存在H1亚型猪流感抗体,场阳性率为75%(21/28),猪群血清抗体阳性率在8%~100%之间,总阳性率为46.09%(289/627);部分猪群存在H3亚型猪流感抗体,场阳性率为28.57%(8/28),猪群血清抗体阳性率在10%~95%之间,总阳性率为12.76%(82/627);未监测到H5、H9亚型猪流感抗体的存在。  相似文献   

11.
An immunoperoxidase monolayer assay (IPMA) has been developed to detect antibodies against swine influenza A virus (SIV) in pig sera. The test was evaluated by using sequential sera from pigs experimentally infected with H1N1 subtype of SIV. Two hundred field serum samples that had been examined by the hemagglutination inhibition (HI) test were also tested. Antibodies specific to SIV were detected as early as 3 days postinoculation (dpi) in the IPMA test as compared with 7 dpi by the HI test. Unlike HI, no serum treatment was required in the IPMA test. Regardless of the virus used in the test, IPMA detected antibodies to both H1N1 and H3N2 subtypes of SIV whereas HI detects antibodies against either H1N1 or H3N2, depending upon the virus used in the test. Results of this study indicate that IPMA is a useful test for screening of pig sera for SIV antibodies.  相似文献   

12.
This paper reports on a serological and virological survey for swine influenza virus (SIV) in densely populated pig areas in Spain. The survey was undertaken to examine whether the H1N2 SIV subtype circulates in pigs in these areas, as in other European regions. Six hundred sow sera from 100 unvaccinated breeding herds across Northern and Eastern Spain were examined using haemagglutination inhibition (HI) tests against H1N1, H3N2 and H1N2 SIV subtypes. Additionally, 225 lung samples from pigs with respiratory problems were examined for the presence of SIV by virus isolation in embryonated chicken eggs and by a commercial membrane immunoassay. The virus isolates were further identified by HI and RT-PCR followed by partial cDNA sequencing. The HI test on sera revealed the presence of antibodies against at least one of the SIV subtypes in 83% of the herds and in 76.3% of the animals studied. Of the 600 sow sera tested, 109 (18.2%), 60 (10%) and 41 (6.8%) had SIV antibodies to subtype H1N2 alone, H3N2 alone and H1N1 alone, respectively. Twelve H3N2 viruses, 9 H1N1 viruses and 1 H1N2 virus were isolated from the lungs of pigs with respiratory problems. The analysis of a 436 nucleotide sequence of the neuraminidase gene from the H1N2 strain isolated further confirmed its identity. Demonstrably, swine influenza is still endemic in the studied swine population and a new subtype, the H1N2, may be becoming established and involved in clinical outbreaks of the disease in Spain.  相似文献   

13.
甘肃省猪流感H5和H9抗体的血清学调查   总被引:2,自引:1,他引:1  
用血凝(HA)和血凝抑制试验(HI)对甘肃省742份猪血清进行了猪流感H5和H9亚型抗体检测。在12个市州的猪群中检出SIH9亚型抗体,检出阳性34份,平均阳性率为4.58%。阳性率最高为9.09%,最低为0.91%。在2个市州的猪群中检出SIH5亚型抗体,检出阳性3份,平均阳性率为0.40%。阳性率最高为4.76%,最低为2.98%。检测患病猪(非流感病)血清66份,其中8份检测出SIH9抗体.抗体阳性率为12.12%。  相似文献   

14.
Hemagglutination inhibition (HI) has been a reliable method for determining porcine antibody levels to the well-characterized swine influenza virus (SIV) H1N1 and H3N2 subtypes. However, the recent emergence of the novel H1N2 serotype of SIV and the persistence of 2 other serotypes (H1N1 and H3N2) in the United States swine population represents a significant challenge to diagnostics. Both standardized and modified HI protocols were used in a blinded study to examine a collection of 50 control sera representing a total of 12 swine that were experimentally inoculated with one of the 3 SIV subtypes. Using these control sera data, a statistical basis for analysis was established in an attempt to classify 30 field sera with known case histories or seroprevalance into SIV serotype categories. By this approach 57% of the field sera could be classified into specific categories. The remaining samples that could not be classified reliably were most likely composed of heterogeneous anti-SIV antibody populations. These results indicate that although serological differentiation might be possible in a controlled environment, applications of these methods to field samples are currently problematic. Approaches other than HI will be required to fulfill the current need for SIV diagnostics and surveillance when specific serotype identification is required.  相似文献   

15.
The introduction of the 2009 pandemic H1N1 (pH1N1) influenza virus in pigs changed the epidemiology of influenza A viruses (IAVs) in swine in Europe and the rest of the world. Previously, three IAV subtypes were found in the European pig population: an avian‐like H1N1 and two reassortant H1N2 and H3N2 viruses with human‐origin haemagglutinin (HA) and neuraminidase proteins and internal genes of avian decent. These viruses pose antigenically distinct HAs, which allow the retrospective diagnosis of infection in serological investigations. However, cross‐reactions between the HA of pH1N1 and the HAs of the other circulating H1 IAVs complicate serological diagnosis. The prevalence of IAVs in Greek swine has been poorly investigated. In this study, we examined and compared haemagglutination inhibition (HI) antibody titres against previously established IAVs and pH1N1 in 908 swine sera from 88 herds, collected before and after the 2009 pandemic. While we confirmed the historic presence of the three IAVs established in European swine, we also found that 4% of the pig sera examined after 2009 had HI antibodies only against the pH1N1 virus. Our results indicate that pH1N1 is circulating in Greek pigs and stress out the importance of a vigorous virological surveillance programme.  相似文献   

16.
This study presents the results of the virological surveillance for swine influenza viruses (SIVs) in Belgium, UK, Italy, France and Spain from 2006 to 2008. Our major aims were to clarify the occurrence of the three SIV subtypes – H1N1, H3N2 and H1N2 – at regional levels, to identify novel reassortant viruses and to antigenically compare SIVs with human H1N1 and H3N2 influenza viruses. Lung tissue and/or nasal swabs from outbreaks of acute respiratory disease in pigs were investigated by virus isolation. The hemagglutinin (HA) and neuraminidase (NA) subtypes were determined using standard methods. Of the total 169 viruses, 81 were classified as ‘avian‐like’ H1N1, 36 as human‐like H3N2 and 47 as human‐like H1N2. Only five novel reassortant viruses were identified: two H1N1 viruses had a human‐like HA and three H1N2 viruses an avian‐like HA. All three SIV subtypes were detected in Belgium, Italy and Spain, while only H1N1 and H1N2 viruses were found in UK and Northwestern France. Cross‐hemagglutination inhibition (HI) tests with hyperimmune sera against selected older and recent human influenza viruses showed a strong antigenic relationship between human H1N1 and H3N2 viruses from the 1980s and H1N2 and H3N2 human‐like SIVs, confirming their common origin. However, antisera against human viruses isolated during the last decade did not react with currently circulating H1 or H3 SIVs, suggesting that especially young people may be, to some degree, susceptible to SIV infections.  相似文献   

17.
From May 2013 to April 2014, 15 swine family‐run farms (17 pig litters) in two districts in Hung Yen province, near Hanoi, were virologically and epizootiologically monitored for swine influenza viruses (SIV) monthly. No SIV was isolated from nasal swabs. Maternal antibodies were detected in 10 litters, and seroconversion against SIV was detected in six litters. There was a marked difference in patterns of SIV transmission in the two districts. Van Lam district which has low density of swine with mainly smallholder farms had low intensity of SIV, with much of the infection caused by H1N1 2009 pandemic‐like viruses A(H1N1)pdm09, likely originated from humans. In contrast, Van Giang district, which has high swine density and larger farms, had high levels of typical SIV (triple reassortants H3N2 and H3N2 Binh Duong lineage viruses) circulating within swine. With one exception, the SIV lineages detected were those we concurrently isolated from studies in a large central abattoir in Hanoi. Influenza‐like illness symptoms reported by farmers were poorly correlated with serological evidence of SIV infection.  相似文献   

18.
H1N1 and H3N2 are the dominant subtypes causing swine influenza in China and other countries. It is important to develop effective vaccines against both H1N1 and H3N2 subtypes of swine influenza virus (SIV). We examined the effects of a DNA vaccine expressing an influenza HA fused to three copies of murine complement C3d in mice. Plasmids encoding soluble HA (sHA), complete HA (tmHA), or a soluble fused form of HA (sHA-mC3d3) were constructed from the H3N2 subtype of SIV. The immune response was monitored by an enzyme-linked immunosorbent assay (ELISA), hemagglutination inhibition (HI) assays, and virus neutralization tests. Analysis of antibody titers indicated that immunization with HA-mC3d3 resulted in higher titers of anti-HA antibodies and higher antibody affinities, compared with serum from mice immunized with sHA or tmHA. Furthermore, the C3d fusion increased the Th2-biased immune response, by inducing IL-4 production. Splenocytes from mice immunized with sHA-mC3d3 produced about three-fold more IL-4 than did splenocytes from mice immunized with sHA or tmHA. Seven days post-challenge with homologous virus (H3N2), no virus was isolated from the mice immunized with HA-expressing plasmids. However, 10 days post-challenge with heterologous virus (H1N1), only mice immunized with sHA-mC3d3 had no virus or microscopic lesions in the kidneys and cerebrum. In conclusion, C3d enhanced antibody responses to hemagglutinin and protective immunity against SIV of different subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号