首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 400 毫秒
1.
[目的]研究Lyoflora V_3乳杆菌对亚硝酸盐降解的影响,优化其降解条件。[方法]探讨了乳酸菌降解亚硝酸盐的影响因素,主要包括溶液pH、接种量、Na Cl含量和培养时间。采用L_9( 3~4)正交试验对整体工艺进行试验条件优化。[结果]影响乳酸菌降解亚硝酸盐的各因素次序为pH接种量Na Cl含量培养时间,最佳降解条件:pH为3.0,接种量为5%,Na Cl含量为9%,培养时间为72 h。在最佳降解条件下,乳酸菌降解亚硝酸盐的降解率可达98.50%。[结论]该研究可为乳酸菌发酵工艺中亚硝酸盐的控制提供参考。  相似文献   

2.
降解亚硝酸盐乳酸菌的分离与鉴定   总被引:1,自引:0,他引:1  
从水体中分离能够降解亚硝酸盐的乳酸菌。参照《伯杰细菌鉴定手册》对分离出的wyq-1、wyq-2和wyq-3株菌进行生理生化特性鉴定,并利用分子生物学方法进行16SrRNA序列分析,参照国家标准方法GB/T 5009.33-2008中的格里斯比色法测定降解亚硝酸盐的能力。结果表明:3株菌均为乳杆菌属(Lactobacillus),wyq-1为发酵乳杆菌(Lactobacillus fermentum)、wyq-2为嗜酸乳杆菌(Lactobacillus acidophilus)、wyq-3为植物乳杆菌(Lactobacillus plantarum)。对3株菌在添加血红素的MRS液体培养基中和猪肉培养基中降解亚硝酸盐的能力进行了测试,菌株wyq-3降解能力最好,降解率分别为87.0%和69.4%。研究结果表明用乳酸菌降解肉制品中的亚硝酸盐可以取得较好的效果。  相似文献   

3.
甲胺磷降解细菌的筛选与降解特性研究   总被引:2,自引:0,他引:2  
利用甲胺磷作为唯一碳源和氮源的培养方法,从长期受有机磷农药污染的土壤中分离到一株降解菌MAP-3,初步确定MAP-3为假单孢菌属菌(Pseudomonas)。研究了该菌株降解甲胺磷的降解特性,该菌降解甲胺磷的最适温度为30℃,最适pH值为7.0,降解率达89%。MAP-3除了能降解甲胺磷外,还能降解敌敌畏、氧化乐果等有机磷农药。  相似文献   

4.
介绍了亚硝酸盐的来源、优点、危害及测定方法,综述了利用乳酸菌降解腌制食品中亚硝酸盐的方法和机理。  相似文献   

5.
从中国传统特色发酵蔬菜中分离纯化出72株乳酸菌,从中筛选出30株亚硝酸盐降解率在85%以上的乳酸菌,并将其进行耐酸耐胆盐试验,获得5株对胃酸和胆盐有较好耐受力的菌株。通过形态学以及16S rDNA测序鉴定,5株乳酸菌均为植物乳杆菌。对这5株菌进行发酵特性研究,结果表明,JLSC2-6生长繁殖旺盛,产酸能力强,耐盐性能好,功能优良,且具有高效降解亚硝酸盐的能力。接种JLSC2-6发酵泡菜,测定发酵过程中泡菜的pH值、亚硝酸盐含量,结果发现,JLSC2-6发酵泡菜的pH值和亚硝酸盐含量与自然发酵泡菜相比显著下降。因此,植物乳杆菌JLSC2-6可作为一种高效安全的发酵菌株应用于发酵蔬菜。  相似文献   

6.
从长期施用多菌灵的葡萄园土壤中分离纯化得到一株对多菌灵降解效能高的菌株2-1。试验研究表明,该菌降解多菌灵的最适pH值为4.0~9.0,最适温度为25~30℃。该菌在培养温度30℃,pH7.0,摇床转速200 r/min条件下培养64 h,对多菌灵(200 mg/L)的降解率达100%。  相似文献   

7.
苯酚降解菌的分离鉴定及降解特性的初步研究   总被引:2,自引:0,他引:2  
为了筛选高效降解苯酚的微生物,为工业化生物处理受苯酚类污染的工业废水及污染物提供理论指导,采集长期受苯酚污染的污泥,通过选择性增菌、驯化、平板分离、摇瓶复筛等方法从中分离高效降解苯酚菌株。获得一株可耐受高浓度苯酚(2.0g/L)且具有高效降解苯酚能力的假单胞菌(PD3),该菌降解苯酚的最适条件为pH值7.0、温度30℃、苯酚浓度小于0.5g/L。通过调节工业废水及污物中苯酚浓度(小于0.5g/L),可利用分离的假单胞菌(PD3)在上述最适条件下对苯酚进行降解处理。  相似文献   

8.
《农技服务》2016,(13):5-7
通过对呋喃虫酰肼降解菌最适碳源、最适氮源、最适碳源量、最适氮源量、最适温度以及最适pH进行筛选,以确定呋喃虫酰肼降解菌的最佳培养条件。研究结果表明,7株呋喃虫酰肼降解菌最适碳源为淀粉,最适氮源为尿素,最适碳源量是3 g/L,最适氮源量是1.0 g/L-1.2 g/L,最适温度是30℃-35℃、最适pH是6.5-8.0。  相似文献   

9.
联苯菊酯降解菌的筛选及降解特性研究   总被引:1,自引:0,他引:1  
从杨凌某农药生产厂的下水道污泥中分离出一株联苯菊酯降解菌.根据形态、生理生化分析,初步鉴定为假单胞菌属,并命名为LBX3.该菌可以联苯菊酯为唯一碳源生长.试验结果表明,LBX3降解联苯菊酯的最适pH为7.0,最适温度为30℃.在pH为7的基础盐培养基中,150 r/min摇床培养第5天,LBX3对200 mg/L的联苯菊酯的降解率达到72.5%.  相似文献   

10.
通过驯化、发酵筛选等方法,从供试的5株侧耳菌(Pleurotus)中选育到1株具有较高降解木质素的白腐类真菌P802,接种发酵10d后,木质素降解率为38%,对麦秸中纤维素降解率为8.10%。该菌株降解麦秸粉木质素的最适pH为4.0~4.5,最适温度30.4℃。  相似文献   

11.
从青海油井口污泥中,分离出一株能高效降解咔唑的细菌B1。采用富集培养法筛选降解菌株,并利用生理生化特征及16S r DNA基因序列分析鉴定菌株种类,利用高效液相色谱法测定培养液中咔唑浓度。研究菌株在不同p H、盐浓度、温度等条件下的降解能力,及外加碳源、氮源和底物浓度对降解效率的影响。经鉴定,菌株B1属于Sphingosinicella sp.。最适温度和p H分别为30℃和7.0,最适条件下菌株B1在72 h内对100mg/L咔唑的降解率可达到98%,同时该菌株在盐浓度小于10 g/L时降解率较高。此外,研究结果显示,添加0.1 g/L的葡萄糖和硫酸铵能明显提高其降解效率,且菌株B1能耐受700 mg/L浓度的咔唑。研究表明,菌株B1具有高效降解咔唑的能力及良好的环境适应性。  相似文献   

12.
姚成强 《安徽农业科学》2008,36(5):2033-2034
[目的]提出榨菜生产加工中主要影响因子的优化方案。[方法]利用5因素二次回归旋转组合设计研究5个主要影响因子(施氮量、施磷量、食盐浓度、腌制温度和腌制时间)对榨菜生产加工中亚硝酸盐含量的影响。[结果]回归分析结果表明,除施磷量外,其余4个影响因子对亚硝酸盐含量有极显著影响。根据回归方程,利用统计选优方法获得了5个影响因子的适宜范围,即在田间施氮量228.6~252.9 kg/hm2、施磷量396.0~430.8 kg/hm2、食盐浓度11.31%~12.38%和28.63~31.05℃的腌制温度条件下,盐腌榨菜22.74~26.31 d可使亚硝酸盐含量处于极低水平。[结论]根据二次回归旋转组合设计得到的回归方程所提出的主要影响因子优化方案具有较高可信度,为降低食用榨菜的亚硝酸盐含量提供理论依据。  相似文献   

13.
芽孢杆菌zx2和zx7是普施特高效降解菌,研究其生长和降解特性旨在为普施特污染土壤的生物修复提供科学依据.采用瓶培养法,对芽孢杆菌zx2和zx7的生长特性及单菌和复合菌对普施特的降解特性进行了研究.结果表明,zx2和zx7均可在普施特初始浓度≤200 mg· L-1的无机盐培养液中生长良好,zx2在温度25~35℃和pH4.0~7.0时生长良好,而zx7适宜在温度30~35℃和pH5.0~8.0时生长,可见在适应性上二者互补.在最佳条件(温度32℃、pH6.0和普施特初始浓度为200 mg· L-1)下,zx2和zx7在无机盐培养液中对普施特降解动态均符合阻滞动力学,半衰期分别为3.8 d和2.8 d,培养6d时普施特降解率分别为85.81%和90.27%.在培养过程中,zx2的pH是降低的,而zx7的pH基本不变,可初步表明二者降解机理不同;zx2和zx7复合菌(1:1)对普施特降解率比单菌低,为82.70%,这可能是因为zx2或zx7降解普施特的过程中利用了对方产生的降解产物.  相似文献   

14.
优良的菌种资源是污染环境微生物修复技术的核心。为获取红霉素高效降解菌,采用梯度驯化法,以长期堆放鸡粪的有机肥生产车间土壤为对象,开展降解菌筛选鉴定,并研究不同红霉素质量浓度、培养温度、转速、初始pH值,以及外加碳氮源、金属离子对菌株降解红霉素的影响。结果表明,筛选获得一株红霉素高效降解菌株Ery-6。通过菌落形态和16S rDNA序列分析方法,将该菌株鉴定为甲基菌属(Methylobacillus sp.)。Ery-6菌株可以在以红霉素为唯一碳源的无机盐培养基中快速生长,60 h后进入生长稳定期。接种Ery-6菌株可提高红霉素在培养基中的降解速率常数,使其半衰期从88.4 h降低至30.7 h。该菌株在含有100 mg·L-1红霉素的无机盐培养基中,在温度35 ℃、转速120 r·min-1、初始pH值7.0、外加50 mg·L-1蔗糖的条件下,对红霉素的降解效果最佳,48 h降解率达88.68%。菌株可耐受1 000 mg·L-1高质量浓度的红霉素,在温度35 ℃、转速120 r·min-1、初始pH值7.0的条件下48 h降解率达31.95%。该菌株对多种金属离子具有良好的耐受性;但Cu2+既会抑制Ery-6菌株的生长,也会对其降解红霉素产生一定的影响。本研究首次发现甲基菌属菌株具有降解红霉素的能力,且降解效果较好,为生物降解养殖废弃物与环境中的抗生素污染提供了一种新的微生物资源。  相似文献   

15.
为更好解决惠州梅菜的安全生产和风险监测问题,以不同腌制加工时期的梅菜为实验材料,采用盐酸萘乙二胺比色法对惠州梅菜亚硝酸盐的含量进行研究。结果表明:亚硝酸盐的含量与梅菜腌制的用盐量、腌制时间有关。在10~15℃温度下,14%和30%用盐量均在腌制第2天达到最高值,分别为11.85、18.28 mg/kg,腌制第6天下降至1.95、2.17 mg/kg;经晾晒堆放30天后,亚硝酸盐含量均降至1.00 mg/kg以下。234批市售成品梅菜亚硝酸盐含量均低于国家规定的酱腌菜中亚硝酸盐的限度(<20 mg/kg),含量在5 mg/kg以下的占比为94.8%。  相似文献   

16.
以叶用芥菜为原料,采用接种乳酸菌的方式腌制芥菜,优化食盐添加量、接种量、起始pH值和发酵时间,运用响应面分析方法,筛选出腌制芥菜发酵工艺最佳参数。结果表明,腌制芥菜的最佳发酵工艺条件为食盐添加量4.37%、接种量3.72%、起始pH值5.21、发酵时间7.46d,在此条件下腌制芥菜的亚硝酸盐含量仅为1.95mg/kg,总酸含量为0.51g/100g,感官评分为93.50分。  相似文献   

17.
优质生姜低盐腌藏技术及其显微结构研究   总被引:1,自引:0,他引:1  
开展优质生姜低盐腌藏技术研究,为优质原料姜的周年供应提供低盐低温贮藏技术.以大黄姜为原料,以20%高盐常温腌渍为对照,研究6%~12%浓度低盐低温腌渍对生姜原料加工品质,主要营养成分、亚硝酸盐生成量,以及细胞显微结构的影响.结果表明,10%低盐结合低温隔腌渍为最优处理,原料得率达94.7%,原料脆度达0.93 MPa,总花色苷、姜酚、姜黄素的含量分别比高盐处理高1.22、213.45,53.47mg·kg-1,亚硝酸盐生成量较低(2.25 mg·kg-1),综合指标最理想;并通过姜原料细胞显微结构观察,获得了细胞显微水平上的理论支持.  相似文献   

18.
[目的]研制一种新型的TiO_2光催化材料,用于有机污染物的降解。[方法]采用电化学氧化法制备了钛基TiO_2纳米管阵列,表征其微观结构,以甲基橙为降解对象,考察了烧结温度、染料初始浓度和p H对TiO_2纳米管阵列催化降解性能的影响。[结果]500℃烧结温度条件下制得的TiO_2纳米管阵列形貌良好且降解效率最高;TiO_2纳米管阵列对初始浓度较高的染料降解效率高于低浓度的;甲基橙溶液p H为3时,TiO_2纳米管阵列对其降解效率高于p H为7时;TiO_2纳米管阵列(500℃)对10 mg/L甲基橙溶液(p H 3)60 min降解效率可达85.2%。[结论]该试验制备的TiO_2纳米管阵列可有效光催化降解有机染料,在染料废水脱色等领域具有广阔的应用前景。  相似文献   

19.
【目的】揭示在低盐浓度条件下榨菜不同盐度腌制体系细菌种群分布及优势菌变化规律,为进一步确定微生物类型与榨菜腌制质量品质之间的相关性提供微生物学基础。【方法】采用16S rDNA基因克隆文库及克隆子分析方法,对5%和7%盐度条件下榨菜腌制体系的微生物多样性、优势种群及其变化规律进行分析。【结果】5%盐度腌制体系的中前期优势种群为乳杆菌属(Lactobacillus)、明串珠菌属(Leuconostoc)和魏斯氏菌属(Weissella);7%盐度腌制体系的中前期优势乳酸菌为希腊魏斯氏菌(Weissella hellenica);腌制后期,起主导作用的种群均变成了植物乳杆菌(Lactobacillus plantarum)。在5%盐度腌制条件下pH下降较快,在第10天最低达3.79;而7%盐度条件下,pH变化相对较慢在第20天达最低为4.49,相对应其乳酸菌数量前者生长较快,在第10天达到3.22×108 CFU/mL,而在7%盐度条件下乳酸菌数量减少相差近100倍;经腌制3个月的半成品其硝酸盐和亚硝酸盐含量分别在320 mg•kg-1和2.9 mg•kg-1。【结论】 采用16S rDNA克隆文库法可检测榨菜低盐腌制过程微生物多样性。低盐条件下腌制pH始终呈下降趋势最后稳定在3.9-4.0;5%盐度腌制较适合乳酸菌的生长,其早期优势菌主要有乳杆菌属、明串珠菌属和魏斯氏菌属;7%盐度时腌制前期优势菌种为希腊魏斯氏菌;最后起主导作用的种群均为植物乳杆菌。低盐腌制后硝酸盐和亚硝酸盐含量显著低于传统高盐腌制工艺,其它无显著差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号