首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Quality is an important attribute of coffee. Therefore it is important to understand the effect of overstory trees not only on the environment and long-term coffee production, but also on the quality of coffee grown underneath the trees. This study compared coffee quality of Coffea arabica L. vars. Caturra and Catimor 5175 under different levels of shade in a low-elevation, sub-optimal environment for coffee in Costa Rica. Fruit weight and bean size increased significantly when shade intensity was increased from 0% to more than 80% under unpruned Erythrina poeppigiana. While large beans (diameter > 6.7 mm) accounted for 49 and 43% of the coffee from unshaded Caturra and Catimor, respectively, these proportions increased to 69 and 72% under dense permanent shade. This suggested a stronger shade benefit for Catimor than for Caturra. The conversion percentages from fresh-weight coffee fruits to dry-weight green coffee for export were not affected by the treatments. A blind tasting experiment showed consistent shade-induced improvements in appearance of green and roasted coffee as well as in acidity and body of the brew for both varieties. The effect of shade on aroma of the brew was neutral for Caturra and slightly negative for Catimor. It is hypothesized that, in the sub-optimal (low-altitude) coffee-zone studied, shade promotes slower and more balanced filling and uniform ripening of berries, thus yielding a better-quality product than unshaded coffee plants. Shade experiments along environmental gradients should help to validate this conjecture and its relative importance in different coffee-zones.  相似文献   

2.
The objective of this research was to determine the relationships between different ecological features of shade and the incidence of coffee berry borer, coffee leaf rust and spontaneous herbs in rustic coffee plantations in Chiapas, Mexico. Thirty-six 10 m by 10 m plots were established within coffee plantations. The following variables were measured or estimated: number of vegetation strata, percent canopy cover, direct, diffuse and total sunlight below the canopy, plant species richness and diversity, shade tree/shrub density, altitude, aspect, basal area, yields, percentage of coffee berry borer (Hypothenemus hampei Ferr), percentage of coffee leaf rust (Hemileia vastatrix Berk & Br.),percentage of spontaneous herb cover and the presence of paths and runoffs.Results showed a complex agroforestry system, composed of five strata. Coffee berry borer and coffee leaf rust incidence averages were 1.5% and 10.1%,respectively. Average spontaneous herb cover was 34.1%. Coffee leaf rust percentage correlated positively with the coffee berry borer. Number of strata of shade vegetation correlated negatively with leaf rust, while the presence of paths correlated positively with the leaf rust. Species richness and diversity correlated negatively to broad-leaf-herb cover and the presence of runoffs correlated positively to this last variable. Shade tree density (> 10cm d.b.h.) correlated negatively to linear-leaf-herb cover. Percentage of shade cover, light, coffee density, aspect, stand age, basal area and yields were not correlated to pest, disease and weeds. Results support the ecological theory that postulates that diversity and structural complexity in mixed plant systems maintain a healthy system.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Fine-root dynamics (diameter < 2.0 mm) were studied on-farm in associations of Coffea arabica with Eucalyptus deglupta or Terminalia ivorensis and in a pseudo-chronosequence of C. arabica-E. deglupta associations (two, three, four and five years old). Coffee plants were submitted to two fertilisation types. Cores were taken in the 0–40 cm soil profile two years after out-planting and subsequently in the following year in depth layers 0–10 and 10–20 cm, during and at the end of the rainy season, and during the dry season. Fine root density of coffee and timber shade trees was greater in the coffee fertilisation strip as compared to unfertilised areas close to the plants or in the inter-rows. Coffee fine roots were more evenly distributed in the topsoil (0–20 cm) whereas tree fine roots were mostly found in the first 10 cm. Although the two tree species had approximately the same fine root length density, lower coffee / tree fine root length density ratios in T. ivorensis suggest that this shade tree is potentially a stronger competitor with coffee than E. deglupta. Coffee and tree fine root length density for 0–10 cm measured during the rainy season increased progressively from two to five-year-aged associations and coffee fine root length density increased relatively more than E. deglupta fine root length density in the four and five-year-aged plantations suggesting that contrary to expectations, coffee fine roots were displacing tree fine roots.  相似文献   

4.
The advantages of associating shade trees in coffee agroforestry systems (AFS) are generally thought to be restricted mostly to poor soil and sub-optimal ecological conditions for coffee cultivation whereas their role in optimal conditions remains controversial. Thus, the objective of this study was to investigate, under the optimal coffee cultivation conditions of the Central Valley of Costa Rica, the impact of Inga densiflora, a very common shade tree in Central America, on the microclimate, yield and vegetative development of shaded coffee in comparison to coffee monoculture (MC). Maximum temperature of shaded coffee leaves was reduced by up to 5°C relative to coffee leaf temperature in MC. The minimum air temperature at night was 0.5°C higher in AFS than air temperature in MC demonstrating the buffering effects of shade trees. As judged by the lower relative extractable water (REW) in the deep soil layers during the dry season, water use in AFS was higher than in MC. Nevertheless, competition for water between coffee and associated trees was assumed to be limited as REW in the 0–150 cm soil layer was always higher than 0.3 in shaded coffee compared to 0.4 in monoculture. Coffee production was quite similar in both systems during the establishment of shade trees, however a yield decrease of 30% was observed in AFS compared to MC with a decrease in radiation transmittance to less than 40% during the latter years in the absence of an adequate shade tree pruning. As a result of the high contribution (60%) of shade trees to overall biomass, permanent aerial biomass accumulation in AFS amounted to two times the biomass accumulated in MC after 7 years. Thus provided an adequate pruning, Inga-shaded plantations appeared more advantageous than MC in optimal conditions, especially considering the fact that coffee AFS provides high quality coffee, farmers’ revenue diversification and environmental benefits.  相似文献   

5.
We compared how management approaches affected shade tree diversity, soil properties, and provisioning and carbon sequestration ecosystem services in three shade coffee cooperatives. Collectively managed cooperatives utilized less diverse shade, and pruned coffee and shade trees more intensively, than individual farms. Soil properties showed significant differences among the cooperatives, with the following properties contributing to differentiation: N, pH, P, K, and Ca. Higher tree richness was associated with higher soil pH, CEC, Ca, and Mg, and lower K. Higher tree densities were associated with lower N, K, and organic matter. Although we found differences in the incidence of provisioning services (e.g., fruit), all plantations generated products other than coffee. No differences were observed between C-stocks. The history and institutional arrangements of cooperatives can influence management approaches, which affect ecosystem properties and services. Our study corroborates that interdisciplinary investigations are essential to understand the socio-ecological context of tropical shade coffee landscapes.  相似文献   

6.
Sap flows of coffee (Coffea arabica L. cv ‘Costa Rica 95’) and associated timber trees (Eucalyptus deglupta or Terminalia ivorensis) or leguminous tree (Erythrina poeppigiana) were measured simultaneously during 12 months in 4-year-old coffee agroforestry systems in sub-optimal ecological conditions of Costa Rica. In the wet period, coffee and shade tree transpiration followed the daily patterns of photosynthetic photon flux density (PPFD) and reference evapotranspiration (ETo) while their transpiration was restricted at higher air VPD values (>1.5 kPa) registered during the dry period. Coffee transpired more per unit leaf area in full sun than under shade, an indication of higher environmental coffee stress in non shaded conditions. Nonetheless, coffee daily water consumption per hectare was generally higher under shade than in full sun due higher vegetative growth of shade-grown coffee plants. Minimum and maximum daily transpiration were 0.74 and 4.08 mm for coffee, 0.35 and 1.06 mm for E. deglupta, 0.70 and 2.10 mm for T. ivorensis and 0.13 and 0.79 mm for E. poeppigiana. Estimation of the annual combined water transpiration by coffee and shade trees was 20–250% higher than that of coffee grown in full sun. Nevertheless, there was no evidence that water use by associated trees decreased soil water availability for coffee and hence limited coffee transpiration in the dry season due to its relatively short length (3 months) and the high annual rainfall (over 3100 mm). In the sub-optimal, low altitude conditions of this experiment, E. deglupta was the optimum shade species as it maintained a more constant shade level throughout the year and ensured a better protection to coffee underneath than T. ivorensis and E. poeppigiana which underwent a complete defoliation during the adverse meteorological conditions of the dry period.  相似文献   

7.
The major causes of deforestation and degradation of natural resources in the Belete-Gera Forest of Ethiopia are coffee production activities and encroachment into forestland to expand farmland and pasture. Population growth, and the government’s land-reform and re-settlement programs have caused local residents to lose harmony with the land. Forest management in this area hasn’t yet been fully developed. The objectives of this study are to identify the extent of deforestation and natural resource degradation, in preparation for a sound management plan. Encroachment of farmland and pasture into natural forest during the past four years has been identified through interviews and aerial photo interpretation. The encroachment rate is 1.45% per year. Encroachment occurred mostly on areas with gentle slopes adjacent to populated villages and along roads and footpaths. The extent and impact of coffee production activities were examined through agency documents, forest survey data and vegetation survey. It is estimated that up to 49% of the accessible natural forest is under the influence of coffee production activities, among which collecting of naturally grown coffee beans has the least and the coffee plantations has the most impact on the natural forest. Coffee plantations in natural forest have reduced the forest density and species diversity. Age structure of the trees is limited to mature and old classes only, which eventually endangers their function as shade for coffee plantations. This project was funded by the Japan International Cooperation Agency.  相似文献   

8.
Coffea arabica shrubs are indigenous to the understorey of the moist evergreen montane rainforest of Ethiopia. Semi-forest coffee is harvested from semi-wild plants in forest fragments where farmers thin the upper canopy and annually slash the undergrowth. This traditional method of coffee cultivation is a driver for preservation of indigenous forest cover, differing from other forms of agriculture and land use which tend to reduce forest cover. Because coffee farmers are primarily interested in optimizing coffee productivity, understanding how coffee yield is maximized is necessary to evaluate how, and to what extent, coffee production can be compatible with forest conservation.Abiotic variables and biotic variables of the canopy were recorded in 26 plots within 20 forest fragments managed as semi-forest coffee systems near Jimma, SW Ethiopia. In each plot, coffee shrub characteristics and coffee yield were recorded for four coffee shrubs. Cluster and indicator species analyses were used to differentiate plant communities of shade trees. A multilevel linear mixed model approach was then used to evaluate the effect of abiotic soil variables, shade tree plant community, canopy and stand variables, coffee density and coffee shrub size variables on coffee yield.Climax species of the rainforest were underrepresented in the canopy. There were three impoverished shade tree communities, which differed in tree species composition but did not exhibit significant differences in abiotic soil variables, and did not directly influence coffee yield. Coffee yield was primarily determined by coffee shrub branchiness and basal diameter. At the stand level a reduced crown closure increased coffee yield. Yield was highest for coffee shrubs in stands with crown closure less than median (49 ± 1%). All stands showed a reduced number of stems and a lower canopy compared to values reported for undisturbed moist evergreen montane rainforests.Traditional coffee cultivation is associated to low tree species diversity and simplified forest structure: few stems, low canopy height and low crown closure. Despite intensive human interference some of the climax species are still present and may escape local extinction if they are tolerated and allowed to regenerate. The restoration of healthy populations of climax species is critical to preserve the biodiversity, regeneration capacity, vitality and ecosystem functions of the Ethiopian coffee forests.  相似文献   

9.
Shade management in coffee and cacao plantations   总被引:1,自引:0,他引:1  
Shade trees reduce the stress of coffee (Coffea spp.) and cacao (Theobroma cacao) by ameliorating adverse climatic conditions and nutritional imbalances, but they may also compete for growth resources. For example, shade trees buffer high and low temperature extremes by as much as 5 °C and can produce up to 14 Mg ha-1 yr-1 of litterfall and pruning residues, containing up to 340 kg N ha-1 yr-1. However, N2 fixation by leguminous shade trees grown at a density of 100 to 300 trees ha-1 may not exceed 60 kg N ha-1 yr-1. Shade tree selection and management are potentially important tools for integrated pest management because increased shade may increase the incidence of some commercially important pests and diseases (such as Phythphora palmivora and Mycena citricolor) and decrease the incidence of others (such as Colletotrichum gloeosporioides and Cercospora coffeicola). In Central America, merchantable timber production from commercially important shade tree species, such as Cordia alliodora, is in the range of 4–6m3 ha-1 yr-1. The relative importance and overall effect of the different interactions between shade trees and coffee/cacao are dependent upon site conditions (soil/climate), component selection (species/varieties/provenances), belowground and aboveground characteristics of the trees and crops, and management practices. On optimal sites, coffee can be grown without shade using high agrochemical inputs. However, economic evaluations, which include off-site impacts such as ground water contamination, are needed to judge the desirability of this approach. Moreover, standard silvicultural practices for closed plantations need to be adapted for open-grown trees within coffee/cacao plantations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
评述云南小粒种咖啡不同形式的荫蔽栽培和高海拔区域小粒种咖啡种植对是否要荫蔽栽培的选择;分析了荫蔽栽培技术在推广应用中存在的问题;强调了荫蔽栽培技术规范的重要性,旨在充分发挥荫蔽栽培的技术优势,促进云南小粒种咖啡产业的可持续发展。  相似文献   

11.
During most of its cultivation in Central America, coffee (Coffea arabica L.) suffered few serious pest problems. However, over the past three decades, three factors contributed to significantly increase pest levels and losses: the recent introduction of new pests; more favorable conditions for existing pests, diseases, and weeds due to lower shade levels; and secondary pest problems caused by pesticide use. The strategy of maximizing coffee production with pest control dominated by synthetic pesticides has not only increased yields substantially, but also production costs, pesticide resistance, and both human health and environmental risks. An analysis of the response of the food web in coffee plantations to varying levels of light and humidity associated with different shade levels provides the basis for identifying the optimum shade conditions which minimize the entire pest complex and maximize the effects of beneficial microflora and fauna acting against it. These optimum shade conditions for pest suppression differ with climate, altitude, and soils. The selection of tree species and associations, density and spatial arrangement, as well as shade management regimes are critical decisions for shade strata design. Site-specific knowledge of the seasonal food web dynamics permits growers to determine the appropriate seasonal shade management in order to further suppress pest levels. For example in a low-elevation dry coffee zone, 35 to 65% shade promotes leaf retention in the dry season and reduces Cercospora coffeicola, weeds, and Planococcus citri; at the same time, it increases the effectiveness of microbial and parasitic organisms without contributing to increased Hemileia vastatrix levels or reducing yields. In these conditions, shade should be at a maximum early in the dry season and at a minimum by the middle of the rainy season. Further research is needed on: the effects of individual tree species on the food web; the role of canopy architecture for coffee vigor, photosynthesis, leaf drying, pest susceptibility, and pruning regimes; and on simple observation methods and decision criteria for farmer management of tree-coffee-food web interactions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Shade coffee plantations support high numbers of Neotropical migratory birds, but relatively little is known about the structural and floristic attributes used by individual species. From 2005 to 2007, we studied the relationship between habitat characteristics and Neotropical migratory birds in shade coffee plantations in the Venezuelan Andes. Our results indicate that density of migrants was significantly related to both structural and floristic attributes of coffee farms. Specifically, upper canopy foragers were positively associated with number of large trees (>38?cm dbh), tree canopy height, and understory vegetation density. Low canopy and ground foragers were positively associated with numbers of small (8?C23?cm dbh) and medium (23?C38?cm dbh) trees and increased shade cover. Moreover, certain tree species, especially Inga spp., Erythrina spp. and Acnistus arborescens, were important components of habitat for those species that forage in the canopy. For example, our detailed foraging observations showed that Inga trees were used in greater proportion than available throughout plantations by Cerulean Warblers (Dendroica cerulea), a species of high conservation concern. Overall, our research suggests that suitability of coffee plantations for migratory birds may be improved by managing for particular structural and floristic characteristics of plantations.  相似文献   

13.
For many decades, simplification of traditionally shaded coffee-production systems has been an idealised model for increasing yields. In Mexico, coffee producers have been interested in replacing diverse natural shade with Inga species monocultures due to this practice having the supposed advantages of producing higher coffee yields than diverse shade. However, the effect of different shade systems on yields is little known. The purpose of this study was to evaluate the effect of two types of shaded-coffee systems on coffee yields and soil nutrient content; the first shade system is mainly dominated by Inga latibracteata Harms and the other composed of species-rich natural vegetation. The investigation took place in producer plots in the Francisco I. Madero Community, Municipality of Jitotol, Chiapas, Mexico. Collected data included species richness, shade-tree density, number of strata, tree diameter, tree height, shade-cover percentage, direct and diffused light, coffee yields, soil-nutrient concentrations (N, P, K, Ca and Mg), soil-organic matter and pH. Evaluated shade type did not have an effect on grain yield or soil nutrients. The perceived advantage of the Inga shade system is reduced weed emergence, saving farmers one annual weed-clearing. There was no significant correlation between total N and organic matter. The presence of fewer products and services in comparison to the multiple shade system was thought to be an additional disadvantage to the Inga dominated system. Organic matter in the multiple shade system correlated positively with total N. Due to its complex structure and diversity, the multiple shade system could be certified as shade or bird-friendly coffee. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Both model and field estimations were made of the damage inflicted to coffee plants due to the harvest of timber shade trees (Cordia alliodora) in coffee plantations. Economic analyses were made for different coffee planting densities, yields, and both coffee and timber prices.Damage due to tree felling and log skidding should not be a major limitation to the use of timber shade trees in coffee plantations. The timber price that would balance all discounted losses and benefits to zero, for scenarios with and without trees ranged between 8–20 US $/m3 (current overbark log volume at the saw mill yard is US$ 66/m3). There will be lower margins for coffee damage in high yielding plantations, specially in years of good coffee prices. Nevertheless, the use of timber shade trees is recommended even in these scenarios.  相似文献   

15.
Four equations were developed for predicting the probability of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. ex Laws.) survival for the first (0–1) and first to third (1–3) growing seasons after applying mulching, scalping, or artificial shading (shade cards) treatments in plantations in southwestern Oregon, U.S.A. Variables describing conifer size, levels of competing vegetation, presence of silvicultural treatments, site factors, and climate factors were collected from 13 sites ranging from 0 to 6 years after planting and examined as potential predictors of survival. Age, stem diameter, a competition index for shrubs, severity of growing season at time of treatment, average annual precipitation, aspect, and slope angle were predictors of Douglas-fir survival during 0–1 and 1–3 growing seasons after treatment; the presence of silvicultural treatments was also a predictor only during the first growing season after treatment. Age, aspect, and slope angle were predictors of ponderosa pine survival over both 0–1 and 1–3 growing seasons after treatment; height-diameter ratio, competition indices for herbs, shrubs, and hardwoods, silvicultural treatment, severity of growing season at time of treatment, and average annual precipitation were also predictors only during the first growing season after treatment; crown width was a predictor of survival only during 1–3 growing seasons after treatment. When significant in the models, predicted probability of survival increases with treatments, less severe weather conditions, diameter, crown width, age, and precipitation; probability decreases with increasing height-diameter ratio and competition indices for herbs, shrubs, and hardwoods.  相似文献   

16.
Traditional shade coffee plantations of Kodagu district, in the Western Ghats of southern India, harbor a high density and diversity of trees. Local farmers appreciate native biodiversity, but plantation economics and public policies drive them to gradually replace the original diversified cover with exotic shade trees such as Grevillea robusta, which grows fast and can be easily traded as timber. In order to identify and recommend native timber trees with fast growth rates, we compared the growth performance of four common native species against that of G. robusta, by fitting steel dendrometer bands on 332 shade trees. Results showed that in general G. robusta had the fastest growth rates, but large trees of the native Acrocarpus fraxinifolius had faster growth in the wet western side of the district. Computer projections of long term performance showed that most species were influenced by bioclimatic zone. Species-specific local environmental effects also occurred, including competition from coffee bushes for A. fraxinifolius, influence of aspect for G. robusta, and management block effects for Lagerstroemia microcarpa. Our results show that native species potentially could produce timber at rates equivalent to those of exotic species. However, as in many tropical countries, data on growth rates of native trees within mixed-cover plantations are scarce and this study underlines the urgent need to screen for fast-growing species. Such information provides a strong basis for recommending appropriate changes in public policies that would improve tree tenure security and encourage farmers to grow more native species.  相似文献   

17.

The goal of sustainable coffee production requires multiple functions from agroforestry systems. Many are difficult to quantify and data are lacking, hampering the choice of shade tree species and agronomic management. Process-based modelling may help quantify ecosystem services and disservices. We introduce and apply coffee agroforestry model CAF2021 (https://doi.org/10.5281/zenodo.5862195). The model allows for complex systems with up to three shade tree species. It simulates coffee yield, timber and fruit production by shade trees, soil loss in erosion, C-sequestration, N-fixation, -emission and -leaching. To calibrate the model, we used multivariate data from 32 different treatments applied in two long-term coffee agroforestry experiments in Costa Rica and Nicaragua. Without any further calibration, the model was then applied to agroforestry systems on 89 farms in Costa Rica and 79 in Guatemala where yields had been reported previously in farmer interviews. Despite wide variation in environmental and agronomic conditions, the model explained 36% of yield variation in Costa Rica but only 15% in Guatemala. Model analysis quantified trade-offs between yield and other ecosystem services as a function of fertilisation and shading.

  相似文献   

18.
Changes in coffee economics are leading producers to reduce agrochemical use and increase the use of shade. Research is needed on how to balance the competition from shade trees with the provision of ecological services to the coffee. In 2000, long-term coffee experiments were established in Costa Rica and Nicaragua to compare coffee agroecosystem performance under full sun, legume and non-legume shade types, and intensive and moderate conventional and organic inputs. Coffee yield from intensive organic production was not significantly different from intensive conventional in Nicaragua, but in Costa Rica it was lower during three of the six harvests. Full sun coffee production over 6 years was greater than shaded coffee in Costa Rica (61.8 vs. 44.7 t ha?1, P = 0.0002). In Nicaragua, full sun coffee production over 5 years (32.1 t ha?1) was equal to coffee with shade that included Tabebuia rosea (Bertol.) DC., (27?C30 t ha?1) and both were more productive (P = 0.03) than coffee shaded with Inga laurina (Sw.) Willd. (21.6 t ha?1). Moderate input organic production was significantly lower than other managements under all shade types, except in the presence of Erythrina poepiggina (Walp.) O.F. Cook. Inga and Erythrina had greater basal area and nutrient recycling from prunings than other shade species. Intensive organic production increased soil pH and P, and had higher K compared to moderate conventional. Although legume shade trees potentially provide ecological services to associated coffee, this depends on management of the competition from those same trees.  相似文献   

19.
We investigated the Effects of plantation development, seasons, and soil depth on soil microbial indices in Gmelina arborea plantations in south-western Nigeria. Soil samples were obtained from the soil depths of 0-15 and 15-30 cm from plantations of six different ages during the rainy season, dry seasons, and their transitions. We used plate count and fumigation-extraction methods to determine microbe population and microbial biomass carbon (MB-C) and nitrogen (MB-N), respectively. Plantation age did not affect microbial indices, implying a non-significant effect of plantation development on microbial communities. It could also imply that soil microbial indices had already stabilized in the sampled plantations. Seasonal variation and soil depth had significant effects on microbial indices. At 0-15 cm soil depth, mean MB-C increased from 50.74 μg g-1 during the peak of the dry season (i.e. March) to 99.58 μg g-1 during the peak of the rainy season (i.e. September), while it increased from 36.22 μg g-1 to 75.31 μg g-1 at 15-30 cm soil depth between the same seasonal periods. Bacteria populations and MB-N showed similar increasing trends. Correlations between MB-C, MB-N, microbe populations, and rainfall were positive and linear. Significantly higher microbial activities took place in the plantations during the rainy season, increased with soil wetness, and decreased at greater soil depth.  相似文献   

20.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号