首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Soil acidification and phosphorus deficiency are a major constraint to crop production in tropical soils.Use of conventional liming materials is associated with some limitations viz:inability to solely improve nitrogen and available phosphorus in soils,loss of soil organic carbon and soil aggregate stability.Liming and fertilizer potentials of leaves from three plant materials(Tithonia diversifolia(TL),Imperata cylindrica(SG)and Gliricidia sepium(GL))widely growing in Ogbomoso,southwest Nigeria,were tested under incubation condition.Each of the plant material was applied at the rate of 10 t·hm~(-2) with and without 50%concentration of NPK 15:15:15-urea mix in 500 g acidic soil.Sole lime applied at 1 t·hm~(-2),sole NPK 15:15:15 applied at 60 kg·hm~(-2) mixed with urea at 60 kg N·hm~(-2) and an unamended soil were compared in completely randomized design in three replicates.The treated soils were incubated for 12 weeks.Thereafter,maize seeds were raised in each pot for a period of 3 weeks.Data collected were subjected to analysis of variance.Regression analysis was used to predict contributions of increased soil p H in plant material treated soils to exchangeable Al,H,dry root weight of maize and available phosphorus.Results indicated that sole plant materials were the order SGTLGL significantly(p0.05)reduced exchangeable acidity compared to unamended and sole NPK.Sole NPK had the highest exchangeable acidity(4.7 cmol·kg~(-1))compared to unamended soil(3.3 cmol·kg~(-1))and sole lime(2.7 cmol·kg~(-1)).Application of sole Tithonia diversifolia increased available phosphorus by 214%and 97%compared to unamended and sole NPK treated soils respectively.Sole plant materials increased maize root weight by 33%compared to sole NPK.Increasing soil p H at harvesting in plant material treated soils significantly reduced exchangeable H and A_1.Soil p H was responsible for up to 33%and 53%reductions in exchangeable Al and H,respectively.This culminated into up to 22%increases in dry root weight of maize seedling.Present results showed ability of the plant materials tested to ameliorate soil acidity and improved soil available phosphorus.The plant materials should be explored for using as green manure and composting feedstock.It will go a long way to reduce high dosage use of conventional liming and fertilizer materials on acidic nutrient degraded soils.  相似文献   

2.
The study area is located in Duhok and Sulaimania province in Kurdistan region, lraq. Study soils developed from parent material that has derived from limestone. Randomize, composed and disturbed surface soil samples were collected. The bulk soils were air dried, crushed and passed through 2 mm sieve. Standard methods were used for chemical, physical, geotechnical and mineralogical analyses of soil samples. The results indicated that the study soils texture were clay to loam clay, this texture was considered as suitable for ceramic and pottery industries as a result of increasing clay contents that ranged between 301 g/kg and 676 g/kg. Soil consistence depending on geotechnical properties increased the ability of study soils for resistance rapture and deformation. Existence the high amount of cementing agents in study soils such as organic matter, iron oxides and particularly total carbonate (247.2-308.8 g/kg) act to reduce the bad effect of the smectite minerals group (high shrinkage) in soils of study locations through increasing the resistance of these soils for rupture and deformation. The existing of Kaolinite, palygorskite and chlorite allows clay to be dried in ceramic and pottery industries without cracking from shrinkage. Study soils were different in their colors as a result of existence, different pigmentation materials that led to coloring soils with different colors in turn caused coloring of pottery and ceramic materials. Since, there are no available academic studies or researches about this subject in Kurdistan region in addition the clay pottery and ceramic sector still has a good market at the same time using this type of soils for arts, therefore, this study was conducted.  相似文献   

3.
A laboratory study was conducted in order to explain successive extractions of reserved potassium by using concentrated HCI under reflux for 13 surface and sub-surface soil samples representing three chosen pedons of soil series (472 ECC Bashika, 463 EKC Rabeaa and 461 ECC Talafar) locations of Nineveh Province in Northern of Iraq. The aim is to investigate role of clay minerals on release of reserved potassium from soils. Results showed that dominated clay minerals were (smectite 〉 illite 〉 kaolinite 〉 chlorite) for both 472 ECC and 461 ECC soil series and were (illite 〉 smectite 〉 kaolinite 〉 chlorite) for 463 EKC soil series. Also results appeared that exchangeable K+ released values were 2,483-4,575 mg/kg at 461 ECC and 463 EKC soil series, respectively; non-exchangeable phase ranged from 752-1,390 mg/kg at 461 ECC and 472 ECC soil series, respectively. Soil fertility was evaluated according to its K+ mica release referring for high K+ release content with range between 3,324-5,516 mg/kg at 461 ECC and 463 EKC soil series, but rate ofK~ released was very law according to parabolic diffusion me,del with range from 195-359 mg/kg at latter soil series respectively. Results reflect effect of clay minerals on potassium release as amount and rates in arid and semi-arid regions. It can be concluded the study soils have a high amount of potassium content with low rate release of it, in turn these soil need particular management.  相似文献   

4.
Wise decision-making on resource allocation and intervention targeting for soil management cannot rely solely on trial and error methods and field observations used by small-scale farmers: cost-effective soil fertility survey methods are needed. This study aimed to test the applicability of infrared spectroscopy (IR) as a diagnostic screening tool for making soil fertility recommendations in small-scale production systems. Soil fertility survey of 150 small-scale groundnut farms in western Kenya was conducted using a spatially stratified random sampling strategy. Soil properties examined were pH in water (pHw), total carbon (C), total nitrogen (N), extractable phosphorus (P), exchangeable potassium (K), calcium (Ca), magnesium (Mg) and texture. These properties were calibrated to mid-infrared (MIR) diffuse reflectance using partial least square regression (PLSR). Cross-validated coefficient of determination (r2) values obtained from calibration models were 〉 0.80 for all properties, except P and K with 0.66 and 0.50 respectively. Soil nutritional deficiencies were evaluated using critical nutrient limits based on IR predictions and composite soil fertility indices (SFIs) developed from the soil properties using principal component analysis. The SFIs were calibrated to MIR soil spectral reflectance with cross-validated r: values 〉 0.80. The survey showed that 56% of the groundnut farms had severe soil nutrient constraints for production, especially exchangeable Ca, available P and organic matter. IR can provide a robust tool for farm soil fertility assessment and recommendation systems when backed up by conventional reference analyses. However, further work is required to test direct calibration of crop responses to spectral indicators and to improve prediction of extractable P and K tests.  相似文献   

5.
A rapid and reliable method was developed for analysis of ethephon residues in maize, in combination with the investigation of its dissipation in field condition and stabilities during the sample storage. The residue analytical method in maize plant, maize kernel and soil was developed based on the quantification of ethylene produced from the derivatization of ethephon residue by adding the saturated potassium hydroxide solution to the sample. The determination was carried out by using the head space gas chromatography with flame ionization detector(HS-GC-FID). The limit of quantification(LOQ) of the method for maize plant was 0.05, 0.02 mg kg–1 for maize kernel and 0.05 mg kg–1 for soil, respectively. The fortified recoveries of the method were from 84.6–102.6%, with relative standard deviations of 7.9–3.8%. Using the methods, the dissipation of ephethon in maize plant or soil was investigated. The half life of ethephon degradation was from 0.6 to 3.3 d for plant and 0.7 to 5.7 d for soil, respectively. The storage stabilities of ethephon residues were determined in fresh and dry kernels with homogenization and without homogenization process. And the result showed that ethephon residues in maize kernels were stable under –18°C for 6 mon. The results were helpful to monitor the residue dissipation of ethephon in the maize ecosystem for further ecological risk assessment.  相似文献   

6.
Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.  相似文献   

7.
Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m^2 with an average of 5.2 m^2. The paddy soils with 〉 5 000 pellets phytolith g^-1 soil were termed intensively cultivated paddy soils (ICPS) and those with 〈5000 pellets phytolith g^-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.  相似文献   

8.
Assessing spatial variability and mapping of soil properties constitute important prerequisites for soil and crop management in agricultural areas. To explore the relationship between soil spatial variability and land management, 256 samples were randomly collected at two depths(surface layer 0–20 cm and subsurface layer 20–40 cm) under different land use types and soil parent materials in Yujiang County, Jiangxi Province, a red soil region of China. The pH, soil organic matter(SOM), total nitrogen(TN), cation exchange capacity(CEC), and base saturation(BS) of the soil samples were examined and mapped. The results indicated that soils in Yujiang were acidified, with an average pH of 4.87(4.03–6.46) in the surface layer and 4.99(4.03–6.24) in the subsurface layer. SOM and TN were significantly higher in the surface layer(27.6 and 1.50 g kg~(–1), respectively) than in the subsurface layer(12.1 and 0.70 g kg~(–1), respectively), while both CEC and BS were low(9.0 and 8.0 cmol kg~(–1), 29 and 38% for surface and subsurface layers, respectively). Paddy soil had higher pH(mean 4.99) than upland and forest soils, while soil derived from river alluvial deposits(RAD) had higher pH(mean 5.05) than the other three parent materials in both layers. Geostatistical analysis revealed that the best fit models were exponential for pH and TN, and spherical for BS in both layers, while spherical and Gaussian were the best fitted for SOM and CEC in the surface and subsurface layers. Spatial dependency varied from weak to strong for the different soil properties in both soil layers. The maps produced by selecting the best predictive variables showed that SOM, TN, and CEC had moderate levels in most parts of the study area. This study highlights the importance of site-specific agricultural management and suggests guidelines for appropriate land management decisions.  相似文献   

9.
Recently, near infrared reflectance (NIR) and mid-infrared (MIR) spectroscopy techniques are increasingly introduced as convenient and simple non-destructive techniques for quantifying several soil properties. This study uses MIR method to predict pH, soil organic C, total N, AI, Ca, Mg and K, CEC and soil texture for soil samples collected in Sud-Kivu, Congo. A total of 536 composite soil samples were taken from two locations (Burhale and Luhihi) at two depths (0-20 cm and 20-40 cm) using a spatially-stratified random sampling design within an area of 200 km2. Differences in characteristics were evaluated between the two locations, land use (cultivated vs. non-cultivated land) with soil depths. A random subset of the samples (10%) were analyzed using standard wet chemistry methods, and calibration models developed by MIR data to estimate soil properties for the full soil sample set. Partial least squares regression (PLS) method gave acceptable coefficients of determination between 0.71 and 0.93 for all parameters. Soil organic matter levels were higher in cultivated plots in Luhihi (3.9% C) than in Burhale (3.0% C), suggesting lower levels of soil fertility in the later area. This indicates high levels of acidity, which are likely to limit crop production in the area. Phosphorus deficiency is acute in Burhale (2.4 mg P/kg) but less in Luhihi (5.4 mg P/kg). In both locations, low levels of Ca and Mg indicate that soils may be susceptible to deficiencies in both elements.These findings provide new opportunities for monitoring soil quality in the region which can benefit multiple actors and scientists involved in the agricultural and environmental sectors.  相似文献   

10.
Parent materials and the fertility levels of paddy soils are highly variable in subtropical China. Bacterial diversity and community composition play pivotal roles in soil ecosystem processes and functions. However, the effects of parent material and fertility on bacterial diversity and community composition in paddy soils are unclear. The key soil factors driving the changes in bacterial diversity, community composition, and the specific bacterial species in soils that are derived from different parent materials and have differing fertility levels are unknown. Soil samples were collected from paddy fields in two areas with different parent materials(quaternary red clay or tertiary sandstone) and two levels of fertility(high or low). The variations in bacterial diversity indices and communities were evaluated by 454 pyrosequencing which targeted the V4–V5 region of the 16 S r RNA gene. The effects of parent material and fertility on bacterial diversity and community composition were clarified by a two-way ANOVA and a two-way PERMANOVA. A principal coordinate analysis(PCo A), a redundancy analysis(RDA), and multivariate regression trees(MRT) were used to assess changes in the studied variables and identify the factors affecting bacterial community composition. Co-occurrence network analysis was performed to find correlations between bacterial genera and specific soil properties, and a statistical analysis of metagenomic profiles(STAMP) was used to determine bacterial genus abundance differences between the soil samples. The contributions made by parent material and soil fertility to changes in the bacterial diversity indices were comparable, but soil fertility accounted for a larger part of the shift in bacterial community composition than the parent material. Soil properties, especially soil texture, were strongly associated with bacterial diversity. The RDA showed that soil organic carbon(SOC) was the primary factor influencing bacterial community composition. A key threshold for SOC(25.5 g kg~(–1)) separated low fertility soils from high fertility soils. The network analysis implied that bacterial interactions tended towards cooperation and that copiotrophic bacteria became dominant when the soil environment improved. The STAMP revealed that copiotrophic bacteria, such as Massilia and Rhodanobacter, were more abundant in the high fertility soils, while oligotrophic bacteria, such as Anaerolinea, were dominant in low fertility soils. The results showed that soil texture played a role in bacterial diversity, but nutrients, especially SOC, shaped bacterial community composition in paddy soils with different parent materials and fertility levels.  相似文献   

11.
Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.  相似文献   

12.
Analysis of the spatial variability of soil properties is important to arrange the experimental treatments in the experimental station. This paper aims to study the spatial structure of soil variables and their distribution in the Pengshui tobacco experiment station in Chongqing, China. Soil samples were taken from 289 soil points on 20 m grid in March 2012. Twenty-two soil chemical and physical properties were analyzed by classical statistical and geo-statistical methods. Soil pH, cation exchange capacity (CEC), total phosphorus (TP), available phosphorus (AP), zinc (Zn), magnesium (Mg) and sulphur (S) have the strong spatial dependence, with nugget/sill ratios of less than 25%. The others have the moderate dependence with nugget/sill ratios of 26.17% to 71.04%. Ranges of the spatial correlation varied from 51.30 m for chlorine (C1) to 594.90 m for TP. The clearly patchy maps of the nutrients showed the spatial distributions of the soil variables, which can be used for better management of experimental treatments, achieving reliable exoerimental results in the tobacco exnerimental station.Highlight: Scientific experimentation assumes the existence of random variability for soil attributes. This research was to evaluate the spatial variability of soil chemical and physical attributes and to interpolate the spatial distribution of soil properties in the tobacco experimental station in Chongqing. The result of this work can be used for the agricultural management of tobacco cultivation.  相似文献   

13.
The total potassium(K)content of soils in Heilongjiang was relatively high in general and the available potassium content on soils was quite different for different soil types.The results of electro-ultra-filtration(EUF)analysis showed that the dark brown forest soils and the black soils in the northern part contained relatively high EUF-K,ranged from 12.5 to 15.7 mg per 100g soil.In the black soils in the southern part,the EUF-K ranged from 8 to 9mg per 100g soil.The albic and aeolian sandy soils contained low EUF-K,ranged from 3.2 to 4.8mg per 100g soil.Field experiment in 1982 indicated that potassium fertilizer in soils with medium or low EUF-K,increased soybean yield by 17%-34%,and obviously prevented the epidemic of meadow moth and soybean mosaic virus.Application of potassium fertilizer increased the protein and total sugar content of the plants,promoted transportation of nutrients,speeded up the growth of the plants,improved the resistance of crops to adverse conditions.Application of potassium fertilizer resulted in early maturity of crops(4-7 days earlier than cotrol),which had great significance for preventing crops from early frost damage.Hence,in order to keep nutrients balance in the soil and to increase soil fertility.potassium fertilizer or materials containing potassium must be applied to soils with medium and low EUF-K,such as black soils in the south part,ablic soils and aeolian sandy soils in Heilongjiang Province.  相似文献   

14.
Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characteristics were evaluated in situ for a period of 161 d in the dry season for two root zone depths. Results show that the Iwo soil series has a field capacity ranging from 2.6%-5.5% at 0-45 cm and 45-90 cm root zone depths, respectively. The soil is quick draining with high infiltration rate and very poor water retention capacity confirming that the soil will require a short irrigation interval of about 2-3 d since available water for plant growth in predominantly sandy soils ranges between 2%-8%. Based on the foregoing, sprinkler irrigation is best suited for the lwo soil series, it should, however, be noted that the water application rate must be less than the infiltration rate of the soil in order to prevent surface ponding and runoff. A multivariate model relating soil moisture content with soil moisture tension and soil temperature calibrated within the study had very low model accuracy of 56% and 45% for the two root zone depths, respectively, implying the need for further studies.  相似文献   

15.
The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nutrients. In this paper, we combined spatial measurements from 2 157 soil samples and geostatistical analysis to assess the spatiotemporal changes in soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP) and available potassium content (AK) from the first soil survey (in the 1980s) to the second soil survey (in the 2000s) in the Taihu region of Jiangsu Province in China. The results showed that average soil nutrients in three soil types all exhibited the increased levels in the 2000s (except for AK in the yellow brown soil). The standard deviation of soil nutrient contents increased (except for TN in the paddy soil). Agricultural production in the 20 years led to increases in SOC, TN, AP and AK by 74, 82, 89 and 65%, respectively, of the Taihu areas analyzed. From the 1980s to 2000s all the nugget/sill ratios of soil nutrients indices were between 25 and 75% (except for AK in the yellow brown soil in the 2000s), indicating moderate spatial dependence. The ratio of AP in the yellow brown soil in the 2000s was 88.74%, showing weak spatial dependence. The spatial correlation range values for SOC, TN, AP and AK in the 2000s all decreased. The main areas showing declines in SOC, TN and AP were in the northwest. For AK, the main region with declining levels was in the east and middle of western areas. Apparently, the increase in soil nutrients in the Taihu region can be mainly attributed to the large increase in fertilizer inputs, change in crop systems and enhanced residues management since the 1980s. Future emphasis should be placed on avoiding excess fertilizer inputs and balancing the effects of the fertilizers in soils.  相似文献   

16.
Lead(Pb) contamination has often been recorded in Chinese field soils. In recent years, efforts have been made to investigate Pb toxicity thresholds in soils with plant growth and microbial assays. However, the influence of soil properties on Pb toxicity impacts on soil microbial processes is poorly understood. In this study ten soils with different properties were collected in China to investigate the relationships between thresholds of Pb toxicity to soil microbes and soil properties. The effect of soil leaching on Pb toxicity was also investigated to determine the possible influence of added anions on Pb toxicity during dose-response tests. Toxicity was inferred by measuring substrate-induced nitrification in leached and non-leached soils after Pb addition. We found that soil microbe Pb toxicity thresholds(EC_x, x=10, 50) differed significantly between the soils; the 10% inhibition ratio values(EC_(10)) ranged from 86 to 218 mg kg~(–1) in non-leached soils and from 101 to 313 mg kg~(–1) in leached soils. The 50% inhibition ratio values(EC_(50)) ranged from 403 to 969 mg kg~(–1) in non-leached soils and from 494 to 1 603 mg kg~(–1) in leached soils. Soil leaching increased EC_(10) and EC_(50) values by an average leaching factor(LF) of 1.46 and 1.33, respectively. Stepwise multiple regression models predicting Pb toxicity to soil microbes were developed based on EC_x and soil properties. Based on these models, soil p H and organic carbon are the most important soil properties affecting Pb toxicity thresholds(R~20.60). The quantitative relationship between Pb toxicity and soil properties will be helpful for developing soil-specific guidance on Pb toxicity thresholds in Chinese field soils.  相似文献   

17.
The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop production often depends on rain-fed or irrigation to supplement rainfall. This paper summarizes the characteristics of gross nitrogen(N) transformation, the fate of N fertilizer and soil N as well as the N loss pathway, and makes suggestions for proper N management in the region. The soils of the region are characterized by strong N mineralization and nitrification, and weak immobilization and denitrification ability, which lead to the production and accumulation of nitrate in the soil profile. Large amounts of accumulated nitrate have been observed in the vadose-zone in soils due to excess N fertilization in the past three decades, and this nitrate is subject to occasional leaching which leads to groundwater nitrate contamination. Under farmer's conventional high N fertilization practice in the winter wheat-summer maize rotation system(N application rate was approximately 600 kg ha–1 yr–1), crop N uptake, soil residual N, NH_3 volatilization, NO_3~– leaching, and denitrification loss accounted for around 27, 30, 23, 18 and 2% of the applied fertilizer N, respectively. NH_3 volatilization and NO_3~– leaching were the most important N loss pathways while soil residual N was an important fate of N fertilizer for replenishing soil N depletion from crop production. The upland agricultural soils in North China are a large source of N_2O and total emissions in this region make up a large proportion(approximately 54%) of Chinese cropland N_2O emissions. The "non-coupled strong ammonia oxidation" process is an important mechanism of N_2O production. Slowing down ammonia oxidation after ammonium-N fertilizer or urea application and avoiding transient high soil NH4+ concentrations are key measures for reducing N_2O emissions in this region. Further N management should aim to minimize N losses from crop and livestock production, and increase the recycling of manure and straw back to cropland. We also recommend adoption of the 4 R(Right soure, Right rate, Right time, Right place) fertilization techniques to realize proper N fertilizer management, and improving application methods or modifying fertilizer types to reduce NH_3 volatilization, improving water management to reduce NO_3~– leaching, and controlling the strong ammonia oxidation process to abate N_2O emission. Future research should focus on the study of the trade-off effects among different N loss pathways under different N application methods or fertilizer products.  相似文献   

18.
Methiopyrisulfuron is a novel sulfonylurea herbicide with good activity for annual broadleaf and gramineal weeds control. Present study was to investigate the effects of organic amendments (including peat (PE), sewage sludge (SS), and humic acid (HA)) on adsorption, desorption and leaching of methiopyrisulfuron in soils. The batch equilibration technique was applied for adsorption-desorption experiments and the leaching was tested through soil column simulated experiments under laboratory conditions. The Freundlich model may well describe adsorption-desorption of methiopyrisulfuron on organic amendments, the natural soil, and amended soils. Organic amendments could not only greatly increase the adsorption capacity of methiopyrisulfuron, but also significantly enhance the hysteresis of desorption of methiopyrisulfuron. The correlations between Kf-ads and organic matter content of amended soils were significant, and the correlations between H and soil organic matter in amended soils with PE, SS, and HA were significant too. The results of soil column experiments indicated that organic amendments greatly decreased leaching of methiopyrisulfuron. This study suggested that PE, SS, and HA could greatly influence environmental behavior of methiopyrisulfuron in soils. Use of organic amendments might be an effective management practice for controlling potential pollution of methiopyrisulfuron to environment.  相似文献   

19.
The property of hydrophilic polymers capable absorbing huge volumes of water led to many practical applications of these new materials in arid regions for improving the water retention in sandy soils. Effects of four carboxymethylcelluloses (CMC), mixed at various rates with the sandy soil, on the water-holding capacity and hydraulic conductivity (KS ) when leached with distilled water (simulating rain), tap water, and saline water were evaluated. The maximum water absorption of CMCs ranged between 80 and 100 kg ? kg-1 of polymer; however, the absorbent swelling capacity decreased significantly with increasing the salt concentration in the solution. The water absorption capacity of CMCs decreased significantly when incorporated in the sandy soil compared to that of the absorbent alone. Application of CMC increased significantly the available water content up to 3 ± 0.5 times. All soils treated with CMCs showed a significant lower in KS compared to the control soil. Meanwhile, KS was found increased with increasing the salt concentration in the leaching solution. This understanding of characteristics of the absorbents and the interactions among absorbents, soil, and irrigation water quality would be of help in water management of sandy soil.  相似文献   

20.
Exotic plant invasion presents a serious threat to native ecosystem structure and function. Little is known about the role of soil microbial communities in facilitating or resisting the spread of invasive plants into native communities. The purpose of this research is to understand how the invasive annual plant Ambrosia artemisiifolia L. facilitates its competition capacity through changing the structure and function of soil microbial communities. The soil characteristics of different areas invaded by A. artemisiifolia were examined. Greenhouse experiments were designed to assess the effect of A. artemisiifolia invasion-induced changes of soil biota on co-occurring plant growth, and on the interactions between A. artemisiifolia and three co-occurring plant species. The results showed that the soil organic C content was the highest in heavily invaded sites, the lowest in native plant sites, and intermediate in newly invaded sites. Soil available N, P and K concentrations in heavily invaded site were 2.4, 1.9 and 1.7 times higher than those in native plant soil, respectively. Soil pH decreased as A. artemisiifolia invasion intensity increased, and was lower in invaded sites(heavily invaded and newly invaded) than in native plant sites. The soil microbial community structure was clearly separated in the three types of sites, and A. artemisiifolia invasion increased anaerobe, sulfate-reducing bacteria and actinomycete abundance. Soil biota of invaded sites inhibits growth of co-occurring plants(Galinsoga parvifloraCav., Medicago sativa L. and Setaria plicata(Lam.) T. Cooke.) compared to soil biota from un-invaded sites, but facilitates A. artemisiifolia growth and competition with co-occurring plants. A. artemisiifolia biomass was 50-130% greater when competing with three co-occurring plants, compared to single-species competition only(invasion by A. artemisiifolia alone), in heavily invaded soil. Results of the present study indicated that A. artemisiifolia invasion alters the soil microbial communit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号