首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring and assessment of agricultural land degradation is of vital importance for better land and water management planning and reclamation. It requires setting baseline information and basic analysis at specific time and space. About 33 geo-referenced soil sampling spots were selected in two agricultural production locations in the Kingdom of Bahrain to assess the status and preliminary causes of land degradation. Soil samples were taken from 13 sites in Diraz location while 19 samples were taken from Budayyi location. The samples were taken to 90 cm depth at 30 cm intervals. Standard procedures were followed to determine soil physiochemical properties. In addition, field observations on farm condition, distance from the sea, method of irrigation and irrigation water source were taken. Some of the soil samples were deliberately taken from outside the irrigated basins among trees compared with samples taken from inside the actively growing area for comparison. The results indicated that the salinity level was significantly (P 〈 0.001) higher at the 0-30 cm soil depth compared with 30-60 cm or 60-90 cm depths in both locations. The distance from the sea did not show clear correlation with surface soil salinity in Budayyi area compared with Diraz. Both locations showed significantly higher salinity levels on samples taken outside the actively growing areas compared with those taken from within. The effect is more prominent at the 0-30 cm depth. The observed variability on salinity levels may be attributed to farm management practices and deteriorating quality of ground water. Thus, agricultural land degradation in Bahrain cannot be attributed to ground water deterioration alone. The use of tertiary treated sewage water (TSE) may ease the pressure on ground water, but the pH of the TSE should be carefully monitored and managed with proper studies on leaching requirements to avoid further salinity complications.  相似文献   

2.
The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Cidncias Agron6micas) in SAo Manuel, State of SAo Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).  相似文献   

3.
In order to explore the regional variability of the effects of land use systems on soil properties, Shouyang County in Shanxi Province and Danling County in Sichuan Province of China were selected as the study areas. Field soil samples of the four land use systems (natural forest, forest plantation, shrubland, and cropland) were collected, respectively, from the two areas. The general statistical tools were used to analyze soil data. The results showed that the influence of land use systems on soil properties was significant. In general, soils in slightly human-disturbed land use systems presented a higher fertility level than those in strongly human-disturbed land use systems in both areas. Furthermore, the impacts of the same land use systems on soil properties showed a distinct regional variability, and even in the same land use system, different farming systems and site management measures (such as irrigation, fertilization, and pesticides) could also lead to the regional heterogeneity in soil properties. The regional variability of land use effects on soil properties reveals the regional variability of the effects of human activities on environmental changes, and could explain the complex relationship between humans and the natural environment in certain ways.  相似文献   

4.
The objective of this paper is to investigate a simple and practical method for soil productivity assessment in the black soil region of Northeast China. Firstly, eight kinds of physicochemical properties for each of 120 soil samples collected from 25 black soil profiles were analyzed using cluster and correlation analysis. Subsequently, parameter indices were calculated using physicochemical properties. Finally, a modified productivity index (MPI) model were developed and validated. The results showed that the suitable parameters for soil productivity assessment in black soil region of Northeast China were soil available water, soil pH, clay content, and organic matter content. Compared with original productivity index (PI) model, MPI model added clay content and organic matter content in parameters while omitted bulk density. Simulation results of original PI model and MPI model were compared using crop yield of land block where investigated soil profiles were located. MPI model was proven to perform better with a higher significant correlation with maize yield. The correlation equation between MPI and yield was: Y= 3.2002Ln(MP/)+ 10.056, R^2 = 0.7564. The results showed that MPI model was an effective and practical method to assess soil productivity in the research area.  相似文献   

5.
The study area is located in Duhok province-Kurdistan region-Northern Iraq and including two locations the first location is situated in Galbook village and the vegetation cover is trees of (Quercus aegilops L.), the second location is situated in Koradeer village that covered with threes of Prunus dulcis (Mill.) Webb.. Disturbed surface soil samples at depth 0-30 cm were collected at four different distances (1, 5, 10 and 15 m) from the tree with randomized selection three trees in each study location. Soil organic matter decreases with increasing distances from tree in both locations under two different trees species, which is attributed to the effect of tree crown. Ordinarily, organic matter content in both locations correspond to the requirements of Mollisols. Statistical analysis of data showed significant differences in organic matter content between locations. Cation exchange capacity is high under tree crown and decreasing with distances from tree in both locations, as a result of decreasing organic matter and increasing calcium carbonate with distances. Commonly soil pH is slightly increased with increasing distances from tree because of increasing calcium carbonate with distances and decreasing organic matter content. Calcium was not uniform with distances and Mg decreasing with distances in both locations. The values of fine clay/coarse clay and fine clay/total clay of soil samples confirm development of the soils under study. Porosity percentage under tree crown is high and decreasing with distances. Soil bulk density was increased with distances in both locations, as a result of decreasing organic matter content with distances. This study aims to explain the effect of tree distances and species on the mollic horizon properties.  相似文献   

6.
Wise decision-making on resource allocation and intervention targeting for soil management cannot rely solely on trial and error methods and field observations used by small-scale farmers: cost-effective soil fertility survey methods are needed. This study aimed to test the applicability of infrared spectroscopy (IR) as a diagnostic screening tool for making soil fertility recommendations in small-scale production systems. Soil fertility survey of 150 small-scale groundnut farms in western Kenya was conducted using a spatially stratified random sampling strategy. Soil properties examined were pH in water (pHw), total carbon (C), total nitrogen (N), extractable phosphorus (P), exchangeable potassium (K), calcium (Ca), magnesium (Mg) and texture. These properties were calibrated to mid-infrared (MIR) diffuse reflectance using partial least square regression (PLSR). Cross-validated coefficient of determination (r2) values obtained from calibration models were 〉 0.80 for all properties, except P and K with 0.66 and 0.50 respectively. Soil nutritional deficiencies were evaluated using critical nutrient limits based on IR predictions and composite soil fertility indices (SFIs) developed from the soil properties using principal component analysis. The SFIs were calibrated to MIR soil spectral reflectance with cross-validated r: values 〉 0.80. The survey showed that 56% of the groundnut farms had severe soil nutrient constraints for production, especially exchangeable Ca, available P and organic matter. IR can provide a robust tool for farm soil fertility assessment and recommendation systems when backed up by conventional reference analyses. However, further work is required to test direct calibration of crop responses to spectral indicators and to improve prediction of extractable P and K tests.  相似文献   

7.
Assessing spatial variability and mapping of soil properties constitute important prerequisites for soil and crop management in agricultural areas. To explore the relationship between soil spatial variability and land management, 256 samples were randomly collected at two depths(surface layer 0–20 cm and subsurface layer 20–40 cm) under different land use types and soil parent materials in Yujiang County, Jiangxi Province, a red soil region of China. The pH, soil organic matter(SOM), total nitrogen(TN), cation exchange capacity(CEC), and base saturation(BS) of the soil samples were examined and mapped. The results indicated that soils in Yujiang were acidified, with an average pH of 4.87(4.03–6.46) in the surface layer and 4.99(4.03–6.24) in the subsurface layer. SOM and TN were significantly higher in the surface layer(27.6 and 1.50 g kg~(–1), respectively) than in the subsurface layer(12.1 and 0.70 g kg~(–1), respectively), while both CEC and BS were low(9.0 and 8.0 cmol kg~(–1), 29 and 38% for surface and subsurface layers, respectively). Paddy soil had higher pH(mean 4.99) than upland and forest soils, while soil derived from river alluvial deposits(RAD) had higher pH(mean 5.05) than the other three parent materials in both layers. Geostatistical analysis revealed that the best fit models were exponential for pH and TN, and spherical for BS in both layers, while spherical and Gaussian were the best fitted for SOM and CEC in the surface and subsurface layers. Spatial dependency varied from weak to strong for the different soil properties in both soil layers. The maps produced by selecting the best predictive variables showed that SOM, TN, and CEC had moderate levels in most parts of the study area. This study highlights the importance of site-specific agricultural management and suggests guidelines for appropriate land management decisions.  相似文献   

8.
Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension was used to study the soil structure in soil at different stages of vegetative succession on the Ziwuling Mountains. The land use and vegetation types included cultivated land, abandoned land, grassland, two types of shrub land, and three types of forests. The grassland, shrub land, and forested areas represented a continuum in vegetative succession that had occurred naturally, as the land was abandoned in 1862. Disturbed and undisturbed soil samples were collected from ten vegetation types from depths of 0-10, 10-20, and 20-30 cm on the Ziwuling Mountains, at a site with an elevation of about 1 500 m. Particle size distribution was determined by the pipette method and aggregate size distribution was determined by wet sieving. The results were used to calculate the particle and aggregate fractal dimension. The results showed that particle and aggregate fractal dimensions varied between vegetation types. There was a positive correlation between the particle fractal dimension and the weight of particles with diameter 〈 0.001 mm, but no relationship between particle fractal dimension and the other particle size classes. Particle fractal dimension was lower in vegetated soils compared to cropland and there was no consistent relationship between fractal dimension and vegetation type. Aggregate fractal dimension was positively correlated with the weight of 〉 0.25 mm aggregates. Aggregate fractal dimension was lower in vegetated soils compared with cropland. In contrast to particle fractal dimension, aggregate fractal dimension described changes in soil structure associated with vegetative succession. The results of this study indicate that aggregate fractal dimension is more effective in describing soil structure and function compared with particle fractal dimension.  相似文献   

9.
Despite the fact that miombo woodland soils have significant implications in global climate change processes, few studies have been done to characterize and classify the soils of the miombo woodland ecosystem of Tanzania. The current study was carried out to map and classify soils of Kitonga Forest Reserve, which is a typical miombo woodland ecosystem, in order to generate relevant information for their use and management. A representative study area of 52 km2 was selected and mapped at a scale of 1:50,000 on the basis of relief. Ten representative soil profiles were excavated and described using standard methods. Soil samples were taken from genetic soil horizons and analyzed in the laboratory for physico-chemical characteristics using standard methods. Using field and laboratory analytical data, the soils were classified according to the FAO-World Reference Base (FAO-WRB) for Soil Resources system as Cambisols, Leptosols and Fluvisols. In the USDA-NRCS Soil Taxonomy system the soils were classified as Inceptisols and Entisols. Topographical features played an important role in soil formation. The different soil types differed in physico-chemical properties, hence exhibit differences in their potentials, constraints and need specific management strategies. Texture varied from sandy to different loams; pH from 5.1 to 5.9; organic carbon from 0.9 g/kg to 20 g/kg; and CEC from 3 cmol/(+)kg to 24 cmol/(+)kg. Sustainable management of miombo woodlands ecosystem soils requires reduced deforestation and reduced land degradation.  相似文献   

10.
By selecting a typical peak-cluster depression area of karst region in Southwest China, we evaluated the effect of land use types and topographic factors on soil nutrients. Grid and line sampling methods were used to sample soil in depression and slope lands respectively, and classical statistical tools were applied to analyze the spatial variability character of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (AK), pH, and C/N. It was found that land use type was the dominant factor that effected the spatial heterogeneity of SOC, TN, TP, TK, AN, and AP. The content of SOC, TN, and AN decreased with the increase of land use intensity. Due to high fertilizer input, TP and AP in tillage fields were higher than those in the other land use types. TK had no obvious change trend among various land use types. Topographic factors had a significant effect on SOC, TN, TP, AN, AP, AK, and pH. Habitat factor was the dominant factor that effected AK. Altitude factor was the dominant factor for pH. However, all of these factors had no significant effect on C/N. Tillage practice had important effect on soil nutrients loss and soil degradation in the fragile karst ecosystem, and the input of organic manure should be increased in this region.  相似文献   

11.
The purpose of soil monitoring system in Slovakia is better to protect the soils with regard to sustainable land use. The main objective is the observation of soil properties concerning the main threats to soil: soil contamination, salinisation and sodification, decline in soil organic matter (SOM), soil compaction and erosion. Soil monitoring system in Slovakia is consistently running since 1993. Its importance consists of providing the information on changing spatial and temporal variations of soil parameters as well as the evolution of soil quality in topsoil and subsoil. Soil monitoring network in Slovakia is constructed using ecological principles, taking into account all main soil types and subtypes, SOM, climatic regions, emission regions, polluted and non-polluted regions as well as various land use. The results of soil monitoring of 318 sites on agricultural land in Slovakia have been presented. Soil properties are evaluated according to the main threats to soil relating to European Commission recommendation for European soil monitoring performance as follows: soil contamination, soil salinization and sodification, decline in SOM, soil compaction and erosion. The most significant change has been determined in physical properties of soils. The physical degradation was especially manifested in compacted and the eroded soils. About 50% of agricultural land is potentially affected by soil erosion in Slovakia. In addition, decline in SOM and available nutrients indicate the serious facts on evaluation and extension of soil degradation processes during the last period in Slovakia. Obtained measured data and required outputs are reported to Joint Research Centre (JRC) in lspra (Italy) and European Environmental Agency (EEA) in Copenhagen (Denmark). Finally, soil monitoring system thus becomes a basic tool for protection of soils and sustainable land use as well as for the creation of legislatives not only in Slovakia, but in EU, too.  相似文献   

12.
13.
Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.  相似文献   

14.
Analysis of the spatial variability of soil properties is important to arrange the experimental treatments in the experimental station. This paper aims to study the spatial structure of soil variables and their distribution in the Pengshui tobacco experiment station in Chongqing, China. Soil samples were taken from 289 soil points on 20 m grid in March 2012. Twenty-two soil chemical and physical properties were analyzed by classical statistical and geo-statistical methods. Soil pH, cation exchange capacity (CEC), total phosphorus (TP), available phosphorus (AP), zinc (Zn), magnesium (Mg) and sulphur (S) have the strong spatial dependence, with nugget/sill ratios of less than 25%. The others have the moderate dependence with nugget/sill ratios of 26.17% to 71.04%. Ranges of the spatial correlation varied from 51.30 m for chlorine (C1) to 594.90 m for TP. The clearly patchy maps of the nutrients showed the spatial distributions of the soil variables, which can be used for better management of experimental treatments, achieving reliable exoerimental results in the tobacco exnerimental station.Highlight: Scientific experimentation assumes the existence of random variability for soil attributes. This research was to evaluate the spatial variability of soil chemical and physical attributes and to interpolate the spatial distribution of soil properties in the tobacco experimental station in Chongqing. The result of this work can be used for the agricultural management of tobacco cultivation.  相似文献   

15.
The objective of this study was to investigate the contents and distribution of dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at 0-100 cm soil depth under three irrigation treatments, viz., subsurface, drip and furrow irrigation in the greenhouse soil. The soil samples were collected at different depths (0-100 cm), and the contents of soil total organic carbon (TOC), DOC and MBC were analysed. The experiment was conducted for 10 yr, during which period the application of fertilizers and crop management practices were kept identical. The results showed that the contents of TOC, DOC and MBC were significantly affected by different irrigation regimes, decreased with the increase of soil depth. TOC at 0-10 and 80-100 cm soil depths followed the order of furrow irrigation 〉 subsurface irrigation 〉 drip irrigation, whereas at the depth of 10-80 cm followed the order of subsurface irrigation 〉 furrow irrigation 〉 drip irrigation. DOC and MBC contents at 0-100 cm soil depths followed the order of furrow irrigation 〉 drip irrigation 〉 subsurface irrigation, and drip irrigation 〉 furrow irrigation 〉 subsurface irrigation, respectively. The ratios of DOC and MBC to TOC accounted for 4.98-12.87% and 1.48-2.82%, respectively, which were the highest in the drip irrigation treatment, followed were in the furrow irrigation treatment, and the lowest in subsurface irrigation treatment. There were significant positive correlations among the contents of DOC, MBC and TOC in all irrigation treatments. The furrow irrigation facilitated the accumulation of TOC and DOC, while drip irrigation increased the MBC. The content of TOC and the ratios of DOC to TOC were the lowest in subsurface irrigation treatment.  相似文献   

16.
Farmers may not be conscious for their farmland's nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of "Yebrage" using neutron activation analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world's increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.  相似文献   

17.
不同有机物料组合对土壤养分和生化性状的影响   总被引:9,自引:0,他引:9  
【Objective】 The objective of this study is to explore the effects of single type of organic matter and their combinations with various proportions of different organic materials on soil properties. The results would also provide a scientific basis and practical guidance to optimal utilization of agricultural organic wastes and achieve the aim of optimal configuration and agricultural sustainability regarding to soil quality. 【Method】 In this study, three organic materials were used, including rice straw, peanut straw and pig manure. Based on the mass ratio, the single type of organic matter only, the combination of both (rice straw and peanut straw mixing at the ratio of 7﹕3 and 3﹕7, respectively) and three ones (1﹕1). All single and mixture treatments were amended with 1% organic matters of the soil mass and cultivated for 90 days. Thereafter, soil nutrient and biochemical properties were measured. 【Result】 The results showed that different organic materials had a significant impact on soil nutrients and biochemical characteristics. Overall, mixtures of different organic materials were more effective than only single one for improving soil properties measured. The mixture treatments on soil nutrient availability showed additional effects, i.e. the nutrient release derived from mixtures were more than weighted average values of two and three materials. The additional effects of the mixtures on the activities of urease and invertase were not significant, for example, the increased effects of SZ, SHZ and 3S7H mixtures on invertase were 1.46%, 0.18% and 5.97%, respectively. Carbon mineralization rate of the mixture treatments had significant negative additional effects with the treatments of SH, SZ and 3S7H showed 9.91%, 23.54% and 22.95% lower than the weighted average values, respectively. And the corresponding decreased effects for the CO2-C production rate were 24.56%, 16.47% and 18.18%, respectively. BIOLOG analysis showed that AWCD value and carbon utilization potential of the treatments S and 7S3H were the highest among all treatments. The metabolic quotients (qCO2) in the S and 7S3H treatments were higher than those of other treatments. The materials combination of nutrient release and microbial biomass carbon and nitrogen had stronger positive addition. The materials combination of mineralization of organic carbon and qCO2 had stronger negative addition. 【Conclusion】 Results showed that mixing organic materials could improve soil nutrient contents enhance as well as soil biochemical activity. Compared to only one type of organic matter, materials mixture could provide more resources and favorable habitat for soil biological development, leading to acceleration of decomposition and nutrient release and finally improvement of soil fertility.  相似文献   

18.
Inorganic fertilizer NPK (nitrogen, phosphorus and potassium) (S) 25:5:5:5 is generally recommended for optimum yield and quality of tea (Camellia sinensis). Non-judicious use of this inorganic fertilizer however acidifies the soils and pollutes the environment. Integrated soil fertility management (ISFM) which involves the combined use of organic and inorganic fertilizer is recommended for improved crop yield and soil health. An experiment was carried out to determine the effect of enriching cattle manure with different ratios of inorganic fertilizers (OM: NPKS at ratios 1:2 and 1:4), and rates on soil nutrient status, nitrogen uptake and yield of tea in the east of Rift Valley, Kenya. Enriching manures and organic manure up to a rate of 150 kg N/ha increased the level of P mature leaf. A higher N and K level in the mature leaf was observed when NPKS was applied at higher rates. In the soil, fertilizer rate up to 150 kg N/ha showed higher pH and K where organic manure and enriched manures were applied while NPKS treatment showed higher P content throughout the soil depths. Enriching organic manures with inorganic fertilizers increased yield significantly.  相似文献   

19.
Soil water dynamics in the dominant lwo soil series (Arinic lixisol) were evaluated at the Federal University of Agriculture, Alabata, Abeokuta, Nigeria. Field capacity, infiltration and water retention characteristics were evaluated in situ for a period of 161 d in the dry season for two root zone depths. Results show that the Iwo soil series has a field capacity ranging from 2.6%-5.5% at 0-45 cm and 45-90 cm root zone depths, respectively. The soil is quick draining with high infiltration rate and very poor water retention capacity confirming that the soil will require a short irrigation interval of about 2-3 d since available water for plant growth in predominantly sandy soils ranges between 2%-8%. Based on the foregoing, sprinkler irrigation is best suited for the lwo soil series, it should, however, be noted that the water application rate must be less than the infiltration rate of the soil in order to prevent surface ponding and runoff. A multivariate model relating soil moisture content with soil moisture tension and soil temperature calibrated within the study had very low model accuracy of 56% and 45% for the two root zone depths, respectively, implying the need for further studies.  相似文献   

20.
Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were significantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deficient in AK and ASi. The results suggest that soil AK and ASi deficiencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号