首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

2.
Maintaining and/or conserving organic carbon (C) and nitrogen (N) concentrations in the soil using management practices can improve its fertility and productivity and help to reduce global warming by sequestration of atmospheric CO2 and N2. We examined the influence of 6 years of tillage (no-till, NT; chisel plowing, CP; and moldboard plowing, MP), cover crop (hairy vetch (Vicia villosa Roth.) vs. winter weeds), and N fertilization (0, 90, and 180 kg N ha−1) on soil organic C and N concentrations in a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) under tomato (Lycopersicon esculentum Mill.) and silage corn (Zea mays L.). In a second experiment, we compared the effects of 7 years of non-legume (rye (Secale cereale L.)) and legume (hairy vetch and crimson clover (Trifolium incarnatum L.)) cover crops and N fertilization (HN (90 kg N ha−1 for tomato and 80 kg N ha−1 for eggplant)) and FN (180 kg N ha−1 for tomato and 160 kg N ha−1 for eggplant)) on soil organic C and N in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) under tomato and eggplant (Solanum melogena L.). Both experiments were conducted from 1994 to 2000 in Fort Valley, GA. Carbon concentration in cover crops ranged from 704 kg ha−1 in hairy vetch to 3704 kg ha−1 in rye in 1999 and N concentration ranged from 77 kg ha−1 in rye in 1996 to 299 kg ha−1 in crimson clover in 1997. With or without N fertilization, concentrations of soil organic C and N were greater in NT with hairy vetch than in MP with or without hairy vetch (23.5–24.9 vs. 19.9–21.4 Mg ha−1 and 1.92–2.05 vs. 1.58–1.76 Mg ha−1, respectively). Concentrations of organic C and N were also greater with rye, hairy vetch, crimson clover, and FN than with the control without a cover crop or N fertilization (17.5–18.4 vs. 16.5 Mg ha−1 and 1.33–1.43 vs. 1.31 Mg ha−1, respectively). From 1994 to 1999, concentrations of soil organic C and N decreased by 8–16% in NT and 15–25% in CP and MP. From 1994 to 2000, concentrations of organic C and N decreased by 1% with hairy vetch and crimson clover, 2–6% with HN and FN, and 6–18% with the control. With rye, organic C and N increased by 3–4%. Soil organic C and N concentrations can be conserved and/or maintained by reducing their loss through mineralization and erosion, and by sequestering atmospheric CO2 and N2 in the soil using NT with cover crops and N fertilization. These changes in soil management improved soil quality and productivity. Non-legume (rye) was better than legumes (hairy vetch and crimson clover) and N fertilization in increasing concentrations of soil organic C and N.  相似文献   

3.
ABSTRACT

Cover crops improve the recovery and recycling of nitrogen and impart weed suppression in crop production. A two-year study with six weekly plantings of cover crops including non-winterkilled species (hairy vetch, Vicia villosa L.; winter rye Secale cereale L.) and winterkilled species (oat, Avena sativa L.; forage radish, Raphanus sativus L.) were assessed for effects on growth of forage rape (Brassica napus L.) and weed suppression. Early planting of cover crops gave the highest biomass and highest nitrogen accumulation. Delaying planting from early-September to mid-October suppressed cover-crop biomass by about 40%. Forage radish produced more biomass in the fall than other cover crops but was winter killed. Spring biomass was highest with rye or vetch. All cover crops suppressed weeds, but suppression was greatest under rye or hairy vetch. Hairy vetch accumulated the largest nitrogen content. Forage rape plants yielded more biomass after a cover crop than after no-cover crop.  相似文献   

4.
Abstract

Tillage, cropping system, and cover crops have seasonal and long‐term effects on the nitrogen (N) cycle and total soil organic carbon (C), which in turn affects soil quality. This study evaluated the effects of crop, cover crop, and tillage practices on inorganic N levels and total soil N, the timing of inorganic N release from hairy vetch and soybean, and the capacity for C sequestration. Cropping systems included continuous corn (Zea mays L.) and stalk residue, continuous corn and hairy vetch (Vicia villosa Roth), continuous soybeans (Glycine max L.) plus residue, and two corn/soybean rotations in corn alternate years with hairy vetch and ammonium nitrate (0, 85, and 170 kg N ha?1). Subplot treatments were moldboard plow and no tillage. Legumes coupled with no tillage reduced the N fertilizer requirement of corn, increased plant‐available N, and augmented total soil C and N stores.  相似文献   

5.
Whereas non-leguminous cover crops such as cereal rye (Secale cereale) or annual ryegrass (Lolium multiflorium) are capable of reducing nitrogen (N) leaching during wet seasons, leguminous cover crops such as hairy vetch (Vicia villosa) improve soil N fertility for succeeding crops. With mixtures of grasses and legumes as cover crop, the goal of reducing N leaching while increasing soil N availability for crop production could be attainable. This study examined net N mineralization of soil treated with hairy vetch residues mixed with either cereal rye or annual ryegrass and the effect of these mixtures on growth and N uptake by cereal rye. Both cereal rye and annual ryegrass contained low total N, but high water-soluble carbon and carbohydrate, compared with hairy vetch. Decreasing the proportion of hairy vetch in the mixed residues decreased net N mineralization, rye plant growth and N uptake, but increased the crossover time (the time when the amount of net N mineralized in the residue-amended soil equalled that of the non-amended control) required for net N mineralization to occur. When the hairy vetch content was decreased to 40% or lower, net N immobilization in the first week of incubation increased markedly. Residue N was significantly correlated with rye biomass (r=0.81, P<0.01) and N uptake (r=0.83, P<0.001), although the correlation was much higher between residue N and the potential initial N mineralization rate for rye biomass (r=0.93, P<0.001) and N uptake (r=0.99, P<0.001). Judging from the effects of the mixed residues on rye N Concentration and N uptake, the proportion of rye or annual ryegrass when mixed with residues of hairy vetch should not exceed 60% if the residues are to increase N availability. Further study is needed to examine the influence of various mixtures of hairy vetch and rye or annual ryegrass on N leaching in soil. Received: 10 March 1997  相似文献   

6.
Cover crops improve soil quality properties and thus land productivity. We compared soil chemical and biological changes influenced by hairy vetch (Vicia villosa Roth.) and cereal rye (Secale cereal) cover crops grown in Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs), Mexico silt loam (fine, smectitic, mesic Vertic Epiaqualfs), or sand in the greenhouse. Cover crop biomass, soil β-glucosidase, β-glucosaminidase, and fluorescein diacetate (FDA) hydrolase activities, and soil chemical properties were measured at six, nine, and twelve weeks after planting. Cover crop biomass increased with highest (p < 0.0001) yields for hairy vetch and cereal rye in Menfro and Mexico soils, respectively. β-glucosaminidase, FDA, organic carbon (C), total nitrogen (N), and total phosphorus (P) contents significantly decreased in all soils for both cover crops. However, β-glucosidase activity significantly increased (p < 0.0001). Long-term field studies are needed to evaluate soil quality improvement under cover crops, especially for soils with marginal organic matter and fertility.  相似文献   

7.
The effects of tillage methods on percent surface residue cover remaining and decomposition rates of crop residues were evaluated in this study. The line transect method was used to measure residue cover percentage on continuous corn (Zea mays L.) plots under no tillage (NT), conventional tillage (CT), chisel plow (CH), and disk tillage (DT). Samples of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) were used for residue decomposition study. Results showed that the percentage of residue cover remaining was significantly higher for NT than for CH and DT and that for CT was the lowest (< 10%). For the same tillage system, the percent residue cover remaining was significantly higher in the higher fertilizer N rate treatments relative to the lower fertilizer N treatments. Weight losses of rye and vetch residues followed a similar pattern under CT and DT, and they were significantly faster in CT and DT than in NT system. Also, the amounts of residue N remaining during the first 16 weeks were always higher under NT than under CT and DT.  相似文献   

8.
Grazing of cover crops in grain cropping systems can increase economic return and diversify agricultural production systems, but the environmental consequences of this intensified management have not been well documented, especially under different tillage systems. We conducted a multiple-year investigation of how cover crop management (grazed and ungrazed) and tillage system [conventional (CT; initial moldboard plowing and thereafter disk tillage) and no tillage (NT)] affected soil physical properties (bulk density, aggregation, infiltration, and penetration resistance) on a Typic Kanhapludult in Georgia. Responses were determined in two cropping systems: summer grain/winter cover crop and winter grain/summer cover crop. Soil bulk density was reduced (P = 0.02) with CT compared with NT to a depth of 30 cm at the end of 0.5 year, but only to a depth of 12 cm at the end of 2, 2.5, and 4.5 years. Grazing of cover crops had little effect on soil bulk density, except eventually with 4.5 years of management. Water-stable macroaggregation was reduced (P ≤ 0.01) with CT compared with NT to a depth of 12 cm at all sampling times during the first 2.5 years of evaluation. Stability of macroaggregates in water was unaffected by grazing of cover crops in both tillage systems. Across 7 sampling events during the first 4 years, there was a tendency (P = 0.07) for water infiltration rate to be lower with grazing of cover crops (5.6 mm min−1) than when ungrazed (6.9 mm min−1), irrespective of tillage system. Across 10 sampling events, soil penetration resistance was greater under NT than under CT at a depth of 0–10 cm (P = 0.001) and the difference was greater in ungrazed than in grazed systems (P = 0.06). Biannual CT operations may have alleviated any surface degradation with animal traffic, but the initially high level of soil organic matter following long-term pasture and conversion to cropland with NT may have buffered the soil from any detrimental effects of animal traffic. Overall, the introduction of cattle to consume the high-quality cover crop forage did not cause substantial damage to the soil.  相似文献   

9.
The response of the soil food web structure to soil quality changes during long-term anthropogenic disturbance due to farming practices has not been well studied. We evaluated the effects of three tillage systems: moldboard plow/rotary harrow (MP), rotary cultivator (RC), and no-tillage (NT), three winter cover-crop types (fallow, FL; rye, RY; and hairy vetch, HV), and two nitrogen fertilization rates (0 and 100 kg N ha−1 for upland rice, and 0 and 20 kg N ha−1 for soybean production) on changes in nematode community structure. Sixty-nine taxa were counted, total nematode abundance (ALL), bacterial feeders (BAC), predators (PRD), omnivores (OMN), and obligatory root feeders (ORF) were more abundant in NT than in MP and RC, but fungal feeders and facultative root feeders (FFR) were more abundant in RC than in NT and MP. Cover crop also influenced nematode community structure; rye and hairy vetch were always higher in ALL, BAC, FFR, ORF, and OMN than fallow. Seasonal changes in nematode community structure were also significant; in particular, as soil carbon increased, nematode abundance also increased. The relationship between nematode indices and soil carbon was significant only in NT, but not in MP and RC. In NT, with increasing soil carbon, enrichment index and structure index (SI) were positive and significant and channel index was negative. Bulk density was significantly negatively correlated with FFR and ORF. Seasonal difference in nematode community between summer and autumn was larger in an upland rice rotation than in a soybean rotation. Over the nine-year experiment, SI increased not only in NT but also in MP and RC, suggesting that repeated similar tillage inversions in agroecosystems may develop nematode community structures adapted to specific soil environmental conditions. Because NT showed the highest values of both SI and soil carbon, the increase of soil carbon in NT is expected to have a great impact on developing a more diverse nematode community structure.  相似文献   

10.
A field experiment with separately tile-drained plots was used to study the ability of oilseed radish (Rhaphanus sativus L.), as a cover crop sown after harvest of a main crop of cereals or peas, to reduce nitrogen (N) and phosphorus (P) leaching losses from a clay loam in southern Sweden over 6 years. In addition to oilseed radish in pure stand, two cover crop mixtures (hairy vetch (Vicia villosa) and rye (Secale cereale) for 3 years and oilseed radish in mixture with buckwheat (Fagopyrum esculentum) for 2 years) were tested. The cover crop plots (three replicates per treatment) were compared with unplanted plots as a control. Plots cropped with oilseed radish during autumn (August–November) had significantly smaller yearly mean N concentration in drainage water over 5 of 6 years compared with unplanted controls. Mineral N content in the soil profile in autumn was significantly less in oilseed radish plots than for control plots in all years. The cover crop mixtures of hairy vetch and rye or buckwheat and oilseed radish also showed the potential to reduce soil mineral N in autumn and N concentration in drainage water, compared with unplanted controls. The cover crops had no impact on P leaching. In conclusion, oilseed radish has the ability to reduce leaching losses of N, without increasing the risk of P leaching.  相似文献   

11.
Abstract

Fulvic acids (FAs) are an important dynamic component of soils that may be affected by soil management. Carbon‐13 cross‐polarization total sideband suppression nuclear magnetic resonance (CP‐TOSS 13C NMR) was used to examine the effect of cover crop systems on the characteristics of fulvic acid fractions. FA was isolated from soils with the following treatments: 1) vetch/rye, 2) rye alone, and 3) check (no cover crops) with varying nitrogen fertilizers. Preliminary NMR results indicate that FA from the rye alone system both with and without nitrogen fertilizers contains less aliphatic carbon (0–108 ppm) than that from the other two treatments. Based on the elemental composition analysis result, C∶N ratio of FA from rye alone cover with or without nitrogen fertilizer is lower than FA from vetch/rye cover system. These data suggest that farming systems affect the FA compositions.  相似文献   

12.
Abstract

The objective of the project was to determine the effects of tillage on soil physical properties. A tillage project, involving three treatments with eight replications [no‐tillage (NT), chisel plowing (CP), and moldboard plowing (MP)], was initiated in the spring of 1989 in southern Illinois. The soil on which the work was conducted was a Grantsburg silt loam (fine‐silty, mixed, mesic Typic Fragiudalf), with a root‐restricting fragipan found at an average depth of 64 + 14 cm from the soil surface. Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] were grown on the plot area on a yearly rotation. The soil physical properties evaluated were: penetration resistance; bulk density; aggregate stability; and pore size distribution by water‐release. Tillage effects on soil penetration resistance were mainly confined to the plow‐layer (i.e. top 23 cm of soil). Generally, the cone index (CI) values for the top 23 cm of soil for all treatments were below 2MPa, except at midseason in 1991, a dry year. Penetration resistance differences due to tillage treatments were not caused by differences in soil water content. Soil bulk density was generally highest for NT at planting, however, the bulk density for CP and MP increased later in the season attaining values comparable to those of NT treatment. Chiseling and moldboard plowing reduced soil aggregate stability. Soil temperature at planting was lower for no‐tillage compared to the moldboard plowed system. Effects of tillage on pore size distribution, for the first two years of the experiment, were significant only at planting. Total porosity was higher for MP than CP and NT in both years. At midseason, 1991, total porosity was lower with MP than with NT and CP. The improved NT crop performance relative to the CP and MP treatments could also be related to better seed bed and root bed conditions following soybean (third year) than sod (first year) and better weed control. Initial crop yield advantages of MP over the conservation tillage systems (NT and CP) deteriorated over time, resulting in decreased soil aggregation, total porosity and soil productivity.  相似文献   

13.
《Applied soil ecology》2008,38(3):247-255
Soil microbial community structure and crop yield was investigated in field tomato production systems that compared black polyethylene mulch to hairy vetch mulch and inorganic N to organic N. The following hypotheses were tested: (1) hairy vetch cover cropping increases crop yield and significantly affects soil microbial community structure when compared to the standard plastic mulch and synthetic fertilizer-based system; (2) within plastic mulch systems, organic amendments will increase crop yield and significantly affect soil microbial community structure when compared to synthetic fertilizer; (3) crop yields and microbial community structure will be similar in the hairy vetch cover cropping and the organic amended plasticulture systems. Treatments consisted of ammonium nitrate (control), hairy vetch cover crop, hairy vetch cover crop and poultry manure compost (10 Mg/ha), three levels of poultry manure compost (5, 10, and 20 Mg/ha), and two levels of poultry manure (2.5 and 5 Mg/ha). Black polyethylene mulch was used in all treatments without hairy vetch. Fatty acid analysis was used to characterize the total soil microbial community structure, while two substrate utilization assays were used to investigate the community structure of culturable bacteria and fungi. Crop yield was not significantly increased by hairy vetch cover cropping when compared to black polyethylene mulch, although microbial community structure was significantly affected by cover cropping. Under black polyethylene mulch, crop yields were significantly increased by the highest levels of compost and manure when compared to inorganic fertilizer, but there was no detectable effect on soil microbial community structure. When cover cropping was compared to organic amended plasticulture systems, crop yields were similar one year but dissimilar the next. However, hairy vetch cover cropping and organic amendments under black plastic mulch produced significantly different soil microbial community structure.  相似文献   

14.
Domestication of biennial Lepidium campestre L. offers possibilities for more varied crop rotations in cold regions, with increased crop cover during winter. In the first winter after sowing, L. campestre can reduce nitrogen (N) leaching before harvesting in the second year. In this system no soil tillage is needed during the first year, unlike in systems with annual crops. A three-year leaching study on loam soil in southern Sweden revealed significantly (p?<?0.05) lower flow-weighted mean total nitrogen (TN) concentration in drainage water under L. campestre (5.8 mg TN L?1) compared with a control treatment (no catch crop and autumn mouldboard ploughing) (9.6 mg TN L?1). In two years of observations, Lepidium campestre had lower flow-weighted mean TN concentration (6.2 mg L?1) than a mixed Vicia villosa L. (hairy vetch)/Secale cereale (winter rye) catch crop (10.2 mg L?1) and rather similar concentration to a Raphanus sativus (oilseed radish) catch crop (5.7 mg TN L?1), both sown after harvest of the main crop. However, L. campestre appeared to have a negative effect on total phosphorus (TP) leaching, with TP concentration in drainage of 0.05 mg L?1 compared with 0.01–0.02 mg L?1 for the other catch crops and the control.  相似文献   

15.
覆盖作物-玉米间作对土壤碳氮含量及相关酶活性的影响   总被引:1,自引:0,他引:1  
  目的  针对东北地区常规农业重用轻养以及玉米连作导致土壤养分不均衡、土壤健康下降等问题,开展覆盖作物-玉米间作对土壤碳氮含量及相关酶活性的影响研究,以期为东北地区保护性利用模式的扩展提供科学依据。  方法  在覆盖作物-玉米间作种植模式下,探讨紫花苜蓿、毛苕子和黑麦草三种覆盖作物对土壤碳氮及酶活性的影响。  结果  不同种植模式和覆盖作物类型显著影响了覆盖作物-玉米间作系统的土壤氮含量及相关酶活性,土壤有机碳含量仅在不同种植模式间有显著差异。在拔节期,与玉米单作相比,紫花苜蓿-玉米间作可以显著增加土壤速效氮含量,其硝态氮和铵态氮含量分别增加了14.94 mg kg?1和2.07 mg kg?1,并且参与氮转化的亮氨酸氨基肽酶活性提高17.9 nmol g?1 h?1。与其他覆盖作物相比,单作毛苕子可以显著提高土壤乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶的活性。毛苕子间作系统的过氧化氢酶和多酚氧化酶活性显著高于黑麦草间作系统,二者分别提高了12.65%和66.94%。在成熟期,玉米单作和间作的土壤有机碳和全氮含量显著高于覆盖作物单作,土壤碳氮水解酶和氧化酶活性均无显著差异。冗余分析表明,土壤铵态氮含量是影响土壤酶活性的关键环境因子。  结论  玉米与豆科覆盖作物的种植增加了间作玉米土壤速效氮的含量,提高了氮转化相关酶的活性,增强了土壤氮素转化潜能及可利用性。研究区适宜选取紫花苜蓿和毛苕子作为覆盖作物种植。  相似文献   

16.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

17.
Cover crops are capable of providing multiple benefits for improving soil quality and enhancing annual crop growth. Maintaining continuous plant cover on agricultural fields with cover crop is of great interest to improve nutrient cycling, prevent soil degradation, and promote further adoption of no-till farming systems. A field study was conducted in eastern South Dakota, USA, in 2007, 2008, and 2009 to evaluate four cover crop combinations [(1) no cover; (2) buckwheat (BUCK) (Fagopyrum esculentum Moench) + slender wheatgrass (Agropyron caninum L.) (SLD WHT); (3) oilseed radish (Raphanus sativus L.) (RAD) + SLD WHT; and (4) purple top turnips (Brassica rapa L.) (TURN + SLD WHT)] sown after oat (Avena sativa L.) on soybean [Glycine max (L.) Merr.] performance. The impacts of no tillage (NT) and conventional tillage (CT) were evaluated at two different planting populations. Soybean plant biomass, seed harvest index, yield, total nitrogen (N), oil concentration, and test weight were measured. Cover crops preceding soybean did not negatively impact most measured plant parameters. Seed yield was increased by the RAD + SLD WHT and TURN + SLD WHT in 2008, whereas in 2007 and 2009 no yield increase or slight yield decrease was shown by the cover crops. Soil tillage practice and planting population had a strong influence on seed yield and seed quality in all three study years.  相似文献   

18.
为研究不同轮作模式对渭北旱作冬小麦?春玉米一年1熟轮作田土壤物理性状和产量的影响,于2007—2014年在陕西省合阳县冬小麦?春玉米轮作田连续7年实施了保护性耕作定位试验,测定和分析了免耕/深松、深松/翻耕、翻耕/免耕、连续免耕、连续深松和连续翻耕6种轮耕模式下麦田0~60 cm土层物理性状、0~200 cm土层土壤湿度和小麦产量的变化。结果表明:1)不同轮耕模式0~40 cm土层土壤容重、孔隙度和田间持水量差异显著,其中以免耕/深松效果最显著;0~60 cm土层免耕/深松轮耕处理平均田间持水量较连续翻耕处理提高12.9%;2)轮耕对土壤团聚体特性影响明显,免耕/深松0.25 mm水稳性团聚体含量(R0.25)最高,结构体破碎率和不稳定团粒指数(ELT)最低,水稳性均重直径(WMWD)最高,水稳性和力稳性团聚体分形维数(D)均最低;3)小麦生育期间免耕/深松处理0~200 cm土层土壤蓄水量和小麦产量较连续翻耕分别增加17.7 mm和9.5%。综合可知,轮耕有利于耕层土壤物理结构改善,免耕/深松更有利于耕层土壤大团聚体形成和土壤结构稳定,利于土壤蓄水保墒和作物增产,为渭北旱塬区麦玉轮作田较适宜的轮耕模式。  相似文献   

19.
From 1993 to 2001, a maize-vegetable-wheat rotation was compared using either 1) composts, 2) manure, or 3) synthetic fertilizer for nitrogen nutrient input. From 1993 to 1998, red clover (Trifolium pratense L.) and crimson clover (Trifolium incarnatum L.) were used as an annual winter legume cover crop prior to maize production. From 1999 to 2001, hairy vetch (Vicia villosa Roth.) served as the legume green manure nitrogen (N) source for maize. In this rotation, wheat depended entirely on residual N that remained in the soil after maize and vegetable (pepper and potato) production. Vegetables received either compost, manure, or fertilizer N inputs. Raw dairy manure stimulated the highest overall maize yields of 7,395 kg/ha (approximately 140 bushels per acre). This exceeded the Berks County mean yield of about 107 bushels per acre from 1994 to 2001. When hairy vetch replaced clover as the winter green manure cover crop, maize yields rose in three of the four treatments (approximately 500-1,300 kg/ha, or 10-24 bu/a). Hairy vetch cover cropping also resulted in a 9-25 % increase in wheat yields in the compost treatments compared to clover cover cropping. Hairy vetch cover crops increased both maize and wheat grain protein contents about 16 to 20% compared to the clover cover crop. Compost was superior to conventional synthetic fertilizer and raw dairy manure in 1) building soil nutrient levels, 2) providing residual nutrient support to wheat production, and 3) reducing nutrient losses to ground and surface waters. After 9 years, soil carbon (C) and soil N remained unchanged or declined slightly in the synthetic fertilizer treatment, but increased with use of compost amendments by 16-27% for C and by 13-16% for N. However, with hairy vetch cover crops, N leaching increased 4 times when compared to clover cover crops. September was the highest month for nitrate leaching, combining high rainfall with a lack of active cash crop or cover crop growth to use residual N. Broiler litter leaf compost (BLLC) showed the lowest nitrate leaching of all the nutrient amendments tested (P= 0.05).  相似文献   

20.
Nitrogen (N) release from roll-killed legume cover crops was determined for hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and a hairy vetch + rye (Secale cereale L.) biculture in an organic corn production system in North Carolina, USA. Cover crops were planted at two locations in fall 2008 and 2009, roll-killed in May, and no-till planted with corn (Zea mays L.). Inorganic soil N and mineral N flux were determined using potassium chloride (KCl) extractions and ion-exchange resin (Plant Root Simulator, PRS) probes at 2-week intervals for 12 weeks and compared to fertilized controls of 0 and 168 kg N ha?1. In 2009, greater plant available N under hairy vetch than under either 0 N control or crimson clover was found, with peak soil N occurring between 4 and 6 weeks after roll kill. Available soil N under crimson clover mulches was less than or equal to 0 N, suggesting net immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号