首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
Effect of cover crop management on soil organic matter   总被引:1,自引:0,他引:1  
Characterization of soil organic matter (SOM) is important for determining the overall quality of soils, and cover crop system may change SOM characteristics. The purpose of this study was to examine the effect of cover crops on the chemical and structural composition of SOM. We isolated humic substances (HS) from soils with the following cover crop treatments: (a) vetch (Vicia Villosa Roth.)/rye (Sesale cereale L.), (b) rye alone, and (c) check (no cover crops) that were treated with various nitrogen (N) fertilizer rates. CPMAS-TOSS (cross-polarization magic-angle-spinning and total sideband suppression) 13C NMR results indicated that humic acids (HA) from soils under rye only were more aromatic and less aliphatic in character than the other two cover crop systems without fertilizer N treatment. Based on the DRIFT (diffuse reflectance Fourier transform infrared) spectra peak O/R ratios, the intensities of oxygen-containing functional groups to aliphatic and aromatic (referred to as recalcitrant) groups, the highest ratio was found in the HA from the vetch/rye system with fertilizer N. The lowest ratio occurred at the vetch/rye system without fertilizer N treatment. The O/R ratio of fulvic acids (FA) can be ranked as: vetch/rye without fertilizer>vetch/rye with fertilizer>no cover crop without fertilizer>rye alone (with or without fertilizer) soils. Both organic carbon (OC) and light fraction (LF) contents were higher in soils under cover crop treatments with and without fertilizer N than soils with no cover crop. These chemical and spectroscopic data show that cover crops had a profound influence on the SOM and LF characteristics.  相似文献   

2.
ABSTRACT

Green manure is an efficient nitrogen (N) source when used as an alternative to chemical fertilizer. However, the N taken up by rice derived from green manure, chemical fertilizers or soil native N in complex nutrient systems is unclear. A pot experiment with partial substitution of urea with Chinese milk vetch (a green manure) implemented with 15N-labeled urea and Chinese milk vetch was set up to study the sources of N in rice and the fate of the fertilizers. The dry weights, N contents, N uptake, and urea N use efficiency were notably higher (by 15–16%, 4–13%, 22–30% and 182%-203%, respectively) in the Chinese milk vetch applied with urea treatment than in the urea alone treatment. The uptake of N from Chinese milk vetch and the use efficiency of Chinese milk vetch N were increased with reductions in the urea input amount. The application of Chinese milk vetch substantially changed the fate of urea: higher amounts of urea N were taken up by rice (approximately 29%) and remained as residue in the soil (approximately 15%) in the related treatments than in the treatment with urea alone (10% and 9%). More urea N than Chinese milk vetch N was taken up by rice (29% vs 20%, respectively) and lost (56% vs 14%, respectively), but less urea N than Chinese milk vetch N remained as residue in the soil (15% vs 66%, respectively). The partial substitution of chemical fertilizer with green manure is an effective method of promoting rice growth by supplying N for rice uptake and promoting more efficient N use.  相似文献   

3.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

4.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

5.
Abstract

A greenhouse pot culture study was conducted to evaluate the agronomic efficiency of two rock phosphates from Mussoorie (MRP) and Purulia (PRP) in two acidic soils from Dapoli (Maharashtra) and Aruvanthklu (Karnataka), India, by growing maize (cv. Ganga) as the test crop and using 32phosphorus (P) single superphosphate (32P=SSP) as a tracer (A‐value technique). Dry‐matter yield and P uptake increased significantly with the application of P fertilizers compared to control treatment (without P) in both the soils. There was no significant difference with respect to dry‐matter yield among the P fertilizer treatments. However, P uptake by the shoots was found to be significantly higher in the PRP treatment in only Dapoli soil compared to other P fertilizer treatments. Phosphorus derived from fertilizer decreased in rock phosphate treatments compared to standard 32P‐SSP treatment in both the soils, indicating an excess availability of P from the rock phosphates. A‐values of soil and rock phosphate indicate a relatively higher P availability from Aruvanthklu soil compared to Dapoli soil; A‐values for the rock phosphates were in the order PRP>MRP. The substitution ratio showed that the availability of P from both the rock phosphates were less than SSP in both the soils.  相似文献   

6.
Abstract

Snap beans (Phaseolus vulgaris) were grown using conventional tillage (CT) and no‐tillage (NT) soil management following either hairy vetch (Vicia villosa Roth) or rye (Secale cereale L.) in 1992 and 1993 in the mountain regions of Georgia near Blairsville. Soil bulk density and inorganic nitrogen content as well as crop dry matter production and yield were monitored. Soil bulk density of the surface (0 to 10 cm) layer under NT exceeded that under CT at planting by as much as 0.33 Mg/m3. However, growth‐limiting bulk densities (values>1.45 Mg/m3) did not occur under either tillage regime. Inorganic soil nitrogen to a depth of 30 cm at planting and at five weeks after planting was similar for the two tillage systems. However, soil nitrogen (N) tended to be greater following hairy vetch than following rye. There were no significant effects of tillage or cover crop on plant stand or plant dry weight. Total yields were generally similar regardless of tillage or cover crop. A notable exception was that early yield in 1992 was 62% greater using NT. These results indicate great potential for use of conservation tillage and cover crops in the production of snap beans in the mountain regions of the southeastern United States.  相似文献   

7.
Abstract

Tillage, cropping system, and cover crops have seasonal and long‐term effects on the nitrogen (N) cycle and total soil organic carbon (C), which in turn affects soil quality. This study evaluated the effects of crop, cover crop, and tillage practices on inorganic N levels and total soil N, the timing of inorganic N release from hairy vetch and soybean, and the capacity for C sequestration. Cropping systems included continuous corn (Zea mays L.) and stalk residue, continuous corn and hairy vetch (Vicia villosa Roth), continuous soybeans (Glycine max L.) plus residue, and two corn/soybean rotations in corn alternate years with hairy vetch and ammonium nitrate (0, 85, and 170 kg N ha?1). Subplot treatments were moldboard plow and no tillage. Legumes coupled with no tillage reduced the N fertilizer requirement of corn, increased plant‐available N, and augmented total soil C and N stores.  相似文献   

8.
ABSTRACT

Cover crops improve the recovery and recycling of nitrogen and impart weed suppression in crop production. A two-year study with six weekly plantings of cover crops including non-winterkilled species (hairy vetch, Vicia villosa L.; winter rye Secale cereale L.) and winterkilled species (oat, Avena sativa L.; forage radish, Raphanus sativus L.) were assessed for effects on growth of forage rape (Brassica napus L.) and weed suppression. Early planting of cover crops gave the highest biomass and highest nitrogen accumulation. Delaying planting from early-September to mid-October suppressed cover-crop biomass by about 40%. Forage radish produced more biomass in the fall than other cover crops but was winter killed. Spring biomass was highest with rye or vetch. All cover crops suppressed weeds, but suppression was greatest under rye or hairy vetch. Hairy vetch accumulated the largest nitrogen content. Forage rape plants yielded more biomass after a cover crop than after no-cover crop.  相似文献   

9.
Abstract

Quantifying the relative contribution of different phosphorus (P) sources to P uptake can lead to greater understanding of the mechanisms that increase available P in integrated P management systems. The 32P–33P double isotope labeling technique was used to determine the relative contribution of green manures (GMs) and P fertilizers to P uptake by Setaria grass (Setaria sphacelata) grown in an amended tropical acid soil (Bungor series) in a glasshouse study. The amendments were factorial combinations of GMs (Calopogonium caeruleum, Gliricidia sepium and Imperata cylindrica) and P fertilizers [phosphate rocks (PRs) from North Carolina (NCPR), China (CPR) and Algeria (APR), and triple superphosphate (TSP)]. Dry matter yield, P uptake, and P utilization from the amendments were monitored at 4, 8, and 15 weeks after establishment (WAE). The GMs alone or in combination with P fertilizers contributed less than 5% to total P uptake in this soil, but total P uptake into Setaria plants in the GM treatments was three to four times that of the P fertilizers because the GMs mobilized more soil P. Also, the GMs markedly increased fertilizer P utilization in the combined treatments, from 3% to 39% with CPR, from 6–9% to 19–48% with reactive PRs, and from 6% to 37% with TSP in this soil. Both PGM and the other decomposition products were probably involved in reducing soil P‐retention capacity. Mobilization of soil P was most likely the result of the action of the other decomposition products. These results demonstrate the high potential of integrating GMs and PRs for managing P in tropical soils and the importance of the soil P mobilization capacity of the organic components. Even the low‐quality Imperata GM enhanced the effectiveness of the reactive APR more than fourfold.  相似文献   

10.
To accurately predict the potential environmental benefits of energy crops, the sequestration of carbon in soil needs to be quantified. The aim of this study was to investigate the mineralisation rate of the perennial C4 grass Miscanthus giganteus and Miscanthus-derived soil organic matter under contrasting nitrogen supply. Soils were collected from sites where Miscanthus had been grown for 11 and 18 years, respectively, and where a C3-grass (Lolium spp.) had been grown for 7 years. The soils were incubated for 4 months at two levels of soil inorganic nitrogen with or without dead root material of Miscanthus.Addition of root material (residues) increased carbon mineralisation of indigenous organic matter when no nitrogen was added. Added inorganic nitrogen decreased carbon mineralisation in all soils. Nitrogen addition did not affect carbon mineralisation of the residues. Using the 13C fraction to calculate the proportion of respiratory CO2 derived from Miscanthus showed that nitrogen addition decreased carbon mineralisation in soils, but it did not affect carbon mineralisation of the residues. Nitrogen mineralisation was highest in the C3 grass soil without added residues. Nitrification decreased pH, especially in the treatments where nitrogen was added. The Miscanthus-derived organic matter is at least as stable as C3 grassland-derived organic matter. Furthermore, the turnover time of the organic matter increases with time under Miscanthus cultivation.The CENTURY soil organic matter sub-model was used to simulate the organic matter decomposition in the experiment. Carbon mineralisation was accurately simulated but there were unexplained discrepancies in the simulation of the δ13C in the respiration from the treatment with residues. The δ13C in respiration did not decrease with time as predicted, indicating that lignin accumulation did not influence the measurements.  相似文献   

11.
Recycling organic waste in agricultural soils is a valid solution. We performed short‐term experiments to investigate the fate of urban sludge and composts, in mine spoils, cultivated or uncultivated, and reclaimed soils located in Florence and Milan, Italy. The samples, either treated or untreated, were fractionated by density into light (<1.63 Mg m?3) and heavy (>1.63 Mg m?3) fractions. The fractions were analyzed for total carbon (C) and nitrogen (N) contents and for δ 13C and δ 15N isotopes, and they were characterized by 13C NMR spectroscopy. Treatment increased the heavy fraction. The addition of sludge in the Florence area acts in synergy with the cultivation, increasing the light fraction (LF). In the Milan area, the LF tends to be decomposed and apparently transformed into HF. The addition of amendments or cultivation enhances the decomposition with release of carbon dioxide. For future research, we suggest lengthening the time of the experiments to integrate climatic variations.  相似文献   

12.
Nitrogen and carbon dynamics in paddy and upland soils for rice cultivation and in upland soil for corn cultivation was investigated by using 13C and 15N dual-labeled cattle manure compost (CMC). In a soil with low fertility, paddy and upland rice took up carbon and nitrogen from the CMC at rates ranging from 0.685 to 1.051% of C and 17.6–34.6% of N applied. The 13C concentration was much higher in the roots than in the plant top, whereas the 15N concentration differed slightly between them, indicating that organic carbon taken up preferentially accumulated in roots. The 13C recovery in the plant top tended to be higher in upland soil than in paddy soil, whereas 15N applied was recovered at the same level in both paddy and upland soils. In the experiment with organic farming soil, paddy rice took up C and N from the CMC along with plant growth and the final recovery rates of 13C and 15N were 2.16 and 17.2% of C and N applied. In the corn experiment, a very large amount of carbon from the CMC was absorbed, accounting for at least 7 times value for rice. The final uptake rates of 13C and 15N reached about 13 and 10% of C and N applied, respectively. Carbon emission from the CMC sharply increased by 2 weeks after transplanting and the nitrogen emission was very low. It is concluded that rice and corn can take up an appreciable level of carbon and nitrogen from the CMC through roots.  相似文献   

13.
Abstract

The objective of this study was to compare mid‐infrared (MIR) an near‐infrared (NIR) spectroscopy (MIRS and NIRS, respectively) not only to measure soil carbon content, but also to measure key soil organic C (SOC) fractions and the δ13C in a highly diverse set of soils while also assessing the feasibility of establishing regional diffuse reflectance calibrations for these fractions. Two hundred and thirty‐seven soil samples were collected from 14 sites in 10 western states (CO, IA, MN, MO, MT, ND, NE, NM, OK, TX). Two subsets of these were examined for a variety of C measures by conventional assays and NIRS and MIRS. Biomass C and N, soil inorganic C (SIC), SOC, total C, identifiable plant material (IPM) (20× magnifying glass), the ratio of SOC to the silt+clay content, and total N were available for 185 samples. Mineral‐associated C fraction, δ13C of the mineral associated C, δ13C of SOC, percentage C in the mineral‐associated C fraction, particulate organic matter, and percentage C in the particulate organic matter were available for 114 samples. NIR spectra (64 co‐added scans) from 400 to 2498 nm (10‐nm resolution with data collected every 2 nm) were obtained using a rotating sample cup and an NIRSystems model 6500 scanning monochromator. MIR diffuse reflectance spectra from 4000 to 400 cm?1 (2500 to 25,000 nm) were obtained on non‐KBr diluted samples using a custom‐made sample transport and a Digilab FTS‐60 Fourier transform spectrometer (4‐cm?1 resolution with 64 co‐added scans). Partial least squares regression was used with a one‐out cross validation to develop calibrations for the various analytes using NIR and MIR spectra. Results demonstrated that accurate calibrations for a wide variety of soil C measures, including measures of δ13C, are feasible using MIR spectra. Similar efforts using NIR spectra indicated that although NIR spectrometers may be capable of scanning larger amounts of samples, the results are generally not as good as achieved using MIR spectra.  相似文献   

14.
Cover crops improve soil quality properties and thus land productivity. We compared soil chemical and biological changes influenced by hairy vetch (Vicia villosa Roth.) and cereal rye (Secale cereal) cover crops grown in Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs), Mexico silt loam (fine, smectitic, mesic Vertic Epiaqualfs), or sand in the greenhouse. Cover crop biomass, soil β-glucosidase, β-glucosaminidase, and fluorescein diacetate (FDA) hydrolase activities, and soil chemical properties were measured at six, nine, and twelve weeks after planting. Cover crop biomass increased with highest (p < 0.0001) yields for hairy vetch and cereal rye in Menfro and Mexico soils, respectively. β-glucosaminidase, FDA, organic carbon (C), total nitrogen (N), and total phosphorus (P) contents significantly decreased in all soils for both cover crops. However, β-glucosidase activity significantly increased (p < 0.0001). Long-term field studies are needed to evaluate soil quality improvement under cover crops, especially for soils with marginal organic matter and fertility.  相似文献   

15.
Abstract

Accurate measurement and characterization of phosphate rock dissolution are important for a better understanding of phosphorus (P) availability in soils. An incubation study was carried out on two New Zealand topsoils (0–15 cm; high P buffering capacity Craigieburn and low P buffering capacity Templeton) amended with North Carolina phosphate rock (NCPR) and water‐soluble phosphate (WSP) at 218 mg P kg?1 (equivalent to 60 kg P ha?1). Isotopic exchange kinetics was carried out after 12 h and 28 days of incubation to characterize P availability. This study showed that sensitivity of capacity factors (r1/R, n) to explain changes in E1min values was affected by the P buffering capacity of the soils. The recovery of applied P in the E pool (RecinE%) with extended incubation time was similar from the NCPR and WSP treatments (3.1–3.3%) in the Craigieburn soil compared with the Templeton soil in which RecinE% values were greater in WSP (9%) than NCPR (1.3%) treatment. The higher values of P derived from the applied P fertilizers in the E pool (PdffinE%>80%) suggested that the NCPR application in both soils would be efficient for increasing P availability to plants.  相似文献   

16.
Two field experiments were conducted on Andisols in Japan to evaluate the changes in the natural 15N and 13C abundance in the soil profile and to determine whether the values of δ15N could be used as an indicator of fertilizer sources or fertilizer fate. The 6-year experiment conducted at the National Agricultural Research Center (NARC) consisted of the following treatments: application of swine compost (COMPOST), slow-release nitrogen fertilizer (SRNF), readily available nitrogen fertilizer (RANF), and absence of fertilization (CONTROL). Experimental plots located at the Nippon Agricultural Research Institute (NARI) received cattle compost at different rates for 12 years; a forest soil at this site was sampled for comparison. Swine compost application led to a considerable change in the δ15N distribution pattern in the soil profile, with the highest δ15N values recorded in the top 20 cm layers of the COMPOST plot, decreasing in the sequence of CONTROL >- RANF > SRNF, mainly due to the relatively high δ15N value of swine compost and its subsequent decomposition. In contrast, SRNF application resulted in the lowest δ15N values in soil, indicating the presence of negligible nitrogen losses relative to input and low nitrogen cycling rates. Values of δ15N increased with compost application rates at NARI. In the leachate collected at 1-m depth, the δ15N values decreased in the sequence of COMPOST > RANF ≥ CONTROL > SRNF. The δ13C values in soil peaked in the 40–60 cm layers for all the fertilizers. The δ13C value was lowest in forest soil due to the presence of plant residues in soil organic matter. These results indicated that the δ15N values in the upper soil layers or leachate may enable to detect pollution sources of organic or inorganic nitrogen qualitatively in Andisols.  相似文献   

17.
【目的】采用15N、13C同位素示踪技术,通过对不同施氮量下嘎啦幼苗生长状况及氮、碳分配、利用特性等的研究,以期为苹果生产合理施肥提供依据。【方法】将2年生盆栽嘎啦幼苗进行低、中、高三个氮水平处理,同时进行15N标记。在新梢旺长初始期、新梢旺长期、新梢缓长期分别进行整株13C标记,72小时后,整株解析为叶、梢、根三部分,进行15N、13C测定。样品全氮用凯氏定氮法测定,15N丰度用ZHT-03质谱计测定。13C丰度用DELTA V Advantage同位素比率质谱仪测定。【结果】1)中、高氮水平的施肥处理可在不同程度上提高整株及叶片干物质量和新梢长度。新梢旺长初始期和新梢缓长期嘎啦幼苗整株干物质量、新梢旺长期叶片干物质分配比率在中、高氮水平处理间差异不显著,中氮水平经济有效。新梢旺长期以后新梢长度以中氮高氮低氮,三者间差异性显著,中氮处理有利于新梢生长。2)在新梢旺长初始期,低氮处理植株叶片15N分配率达50%,比其他处理高出13个百分点左右,表明低氮处理更多的氮被叶片所利用,中氮和高氮处理间差异不显著,说明在本试验施氮条件下中氮供应水平已能满足氮素营养需求。3)新梢旺长期和新梢缓长期幼苗13C固定量均以中氮处理最高,新梢旺长初始期3个处理间根系13C分配率中氮高氮低氮,表明中氮处理有利于碳同化物在嘎啦幼苗中的分配。4)不同施氮量处理的嘎啦幼苗,15N利用率随施氮水平提高而降低,高氮处理对碳同化物分配没有显著贡献。【结论】低、中、高氮不同处理新梢缓长期碳同化物在各器官间的分配比较均衡,氮素水平不能影响碳同化物的分配。盆栽试验表明,中氮水平在保证营养供应的同时,能够促进新梢生长和树势健壮。  相似文献   

18.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

19.
Abstract

Limited information is available about the effect of cropping systems and N application on nitrification potential of soils. This study was conducted to evaluate nitrification rates of soils that have been under long‐term cropping systems at three sites in Iowa. Each experiment consisted of three cropping systems (continuous corn, corn‐soybean‐corn‐soybean, and corn‐oats‐meadow‐meadow) and two fertilizer treatments: untreated (0 N) and treated (+ N) with ammonium or ammonium‐forming fertilizers (180 or 200 kg ha/yr) before corn. The rate of nitrification was studied at 30°C. Results showed that, although soil pH decreased in the plots treated with ammoniacal fertilizers before corn in the cropping system, the rate of nitrification was significantly greater in N‐treated than in untreated plots, suggesting that fertilization with ammonium or ammonium‐forming fertilizers either increased the microbial populations responsible for nitrification in soils and/or that such treatments increased the efficiency of the nitrifiers by inducing the enzymes responsible for conversion of NH4+ to NO3‐. The results suggest that continuous application of ammonium or ammonium‐forming fertilizer could enhance the nitrification rate and increase the potential of contamination of groundwater with nitrate.  相似文献   

20.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号