首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little information is available regarding the effect of sewage sludge biochar on soil properties and crop yield. Thus, our objective was to evaluate the effect of sewage sludge (S) and its biochar (B) on maize shoot yield, nutrients and heavy metals uptake in two calcareous soils. The amendments were applied at the rates of 0, 10, 20 and 40 Mg ha?1. Moreover, NK treatment was included to compare the effects of S and B with conventional fertilization. At harvest time, plant shoots and soil samples were collected for yield, nutrients uptake and chemical analyses. The highest shoot dry matter was obtained in the S treatment. The B application in the clay loam and loam soils resulted in 5.2% increment and 17.7% decrement of shoot dry matter relative to the control, respectively. Shoot dry matter in the NK treatment was significantly higher than in the control. B application decreased Fe, Zn, Mn, Cu and Pb uptake by maize shoot. DTPA-extractable Pb in B-amended soils was lower than in control, while an inverse trend was obtained for available Fe, Zn, Mn and Cu. Biochar application at the rate of 7.3 Mg ha?1 might be suggested for maize cultivation in clay loam soils.  相似文献   

2.
Abstract

Although the application of manure to upland fields is believed to induce changes in the quality of humic substances in soil as well as the quantity, the direction and extent of these changes have not been elucidated. To understand temporal variations in humic acids, periodically collected soil samples from two fields, a Typic Hapludult (Togo) and a Pachic Melanudand (Kuriyagawa), with cattle manure and chemical fertilizer (CF) were examined. The content and degree of humification (darkening) of the humic acids were distinctly greater in Kuriyagawa than in Togo soil. Corresponding to the difference in the degree of humification, molecular size distribution, elemental composition, infrared (IR) spectra, and 13C cross polarization/magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectra of humic acids differed between the two soils. Manure application at 40 Mg ha?1 year?1 for 16 years (Togo) and at 80 or 160 Mg ha?1 year?1 for 19 years (Kuriyagawa) resulted in greater humic acid content compared with plots with CF only because of its increase in the manured plots and/or decrease in the CF plots. Manure application at an extremely high rate (160 Mg ha?1 year?1) resulted in higher H content and greater signal intensities of alkyl C, O-alkyl C and amide C=O in the 13C CPMAS NMR and/or IR spectra. Although humic acids with larger molecule sizes increased in all the manured plots, differences between the humic acids from the plots with and without manure applied at practical levels in the elemental and spectroscopic analyses were small or scarce. These results were considered to be because of the similarity between the indigenous soil humic acids and the manure-derived ones in Togo soil (a low degree of humification) and because of the abundance of highly-humified humic acids in Kuriyagawa soil.  相似文献   

3.
Abstract: By using the indirect 15nitrogen (N) method, the application effects of sewage sludge (SS) on growth indices, yield, and nutrient uptake in Komatsuna (Brassica campestris var. perviridis) grown in a low fertility soil were investigated and compared with those of chemical fertilizer (CF) and no‐fertilizer (NF) treatments. The N‐use efficiencies of CF and SS were 19.7% and 12.1%, respectively, of the applied N. Therefore, the relative efficiency of the sewage sludge to chemical fertilizer was 61.5%. In comparison to NF and CF, the application of SS apparently increased the soil microbial activity, which was evaluated by measuring hydrolysis of fluorescein diacetate. After cultivation, the electrical conductivity (EC) of CF soil (0.175 dS m?1) was significantly higher than those of NF (0.067 dS m?1) and SS soils (0.057 dS m?1). The concentrations of phosphorus (P), calcium (Ca), and magnesium (Mg) in SS leaves were significantly higher than those in CF leaves; however, the concentration of potassium (K) was significantly lower in SS than in CF.  相似文献   

4.

Purpose

Metal distribution patterns among geochemical fractions are informative for metal phytoavailability. Compost added to polluted soils may adsorb metals on the less phytoavailable fractions. A bioassay experiment was conducted to establish possible correlations between metal concentrations in different soil fractions and metal contents in edible plant parts and to investigate the influence of different compost loads on heavy metal availability to plants.

Materials and methods

Chinese cabbage plants were grown in pots with sandy and clayey soils and soils mixed with different doses of biosolid compost spiked with soluble heavy metal salts (Cd, Cu, and Pb). The metals’ distribution pattern in the soil and mixed samples was determined by sequential extraction procedure (modified BCR protocol). The studied fractions, from most to least bioavailable, were water-extractable (WE), exchangeable-adsorbed (EXC), associated with carbonates and acetic acid-soluble forms (CARB), occluded by reducible (hydro)oxides of Fe and Mn (RO), and associated with organic matter (OM) and a residual fraction (RES). Metal concentrations in soil extracts and in the digested plant tissue were measured by ICP-AES.

Results and discussion

The highest compost doses (72 and 115 Mg ha?1) enhanced cabbage yield significantly. No excessive phytoaccumulation of metals was observed in plants grown in the clayey soil or its mixtures with compost. The compost dose of 72 Mg ha?1 was optimal in decreasing Cu accumulation by plants grown in sandy soil, and 28.8 Mg ha?1 was found to be effective in reducing Cd and Pb uptake. Metals were accumulated in plants primarily from the WE, EXC, and CARB fractions, whereas other fractions decreased phytoaccumulation. Compost addition suppressed heavy metal mobility, but different fractions were active in pollutant sorption, depending on soil type and metal.

Conclusions

Compost addition increased metal proportions in the RO and OM fractions, reducing metal phytoavailability. This is especially important for sandy soils with low adsorption ability and higher vulnerability to metal pollution than clayey soils. A compost dose of 20% v/v (or 28.8 Mg ha?1) effectively reduced plant accumulation of Cd and Pb. We propose using the first three steps of the modified BCR protocol as a three-step sequential-extraction procedure for the most phytoavailable fractions of heavy metal: WE, EXC, and CARB.  相似文献   

5.
Abstract

The natural 13C abundance (δ 13C) of plant leaves collected from fields in Thailand and the Philippines (Asian Monsoon tropics) was analyzed, and changes in the δ 13C values of C3 and C4 plants in wet and dry seasons were characterized. In Thailand, the δ 13C values of C3 plants were ?29.2?±?1.04 (mean?±?standard deviation) ‰ in July and August (wet season) and ?28.6?±?1.05‰ in February and March (dry season): these values are not significantly different, whereas the values of C4 plants were ?12.7?±?0.56‰ in the wet season and ?14.5?±?0.68‰ in the dry season (P?<?0.01, t-test). In the Philippines, where plants were collected only in October (late wet season), the δ 13C values of C3 plants were ?29.5?±?1.28‰, whereas those of C4 plants were ?12.6?±?1.11‰. These results suggest that under an Asian Monsoon climate, C4 plants exhibit more negative δ 13C values in the dry season than in the wet season, whereas C3 plants as a whole show no clear seasonal changes in δ 13C values.  相似文献   

6.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

7.
We report the first simultaneous measurements of δ15N and δ13C of DNA extracted from surface soils. The isotopic composition of DNA differed significantly among nine different soils. The δ13C and δ15N of DNA was correlated with δ13C and δ15N of soil, respectively, suggesting that the isotopic composition of DNA is strongly influenced by the isotopic composition of soil organic matter. However, in all samples DNA was enriched in 13C relative to soil, indicating microorganisms fractionated C during assimilation or preferentially used 13C enriched substrates. Enrichment of DNA in 15N relative to soil was not consistently observed, but there were significant differences between δ15N of DNA and δ15N of soil for three different sites, suggesting microorganisms are fractionating N or preferentially using N substrates at different rates across these contrasting ecosystems. There was a strong linear correlation between δ15N of DNA and δ15N of the microbial biomass, which indicated DNA was depleted in 15N relative to the microbial biomass by approximately 3.4‰. Our results show that accurate and precise isotopic measurements of C and N in DNA extracted from the soil are feasible, and that these analyses may provide powerful tools for elucidating C and N cycling processes through soil microorganisms.  相似文献   

8.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

9.
Abstract

A field experiment was conducted to test the new approach for estimating crop nitrogen (N) uptake from organic inputs. The soil was prelabeled with 15N by applying 15N fertilizer to sunflower crop (Helianthus annuus L. var. Viki). The 14N plots, which received unlabelled fertilizer, were also set up. At harvest, 15N labeled residues were added to the unlabeled soils at a rate of 73 kg N ha?1 (direct technique) and unlabeled residues were added to the 15N‐labeled soils at the same rate (indirect technique). Control plots without residues were also established. All plots were sown with the wheat (Triticum aestivum L. var merchouch)–fababean (Vicia faba L.)–wheat (Triticum aestivum L. var merchouch) cropping sequence.

In the cropping sequence, the first, second and third crop derived respectively 12.01, 2.4, and 1.93 kg N ha?1 from crop residues estimated by the direct method and 14.77, 3.3, and 1.85 kg N ha?1 estimated by the indirect method. The results showed no significant difference between the two techniques, which suggests that the new soil prelabeling technique compares well with the direct technique.  相似文献   

10.
Thermography is proposed to be an alternative non-destructive and rapid technique for the study and diagnosing of salt tolerance in plants. In a pot experiment, 30 cultivars of wheat (Triticum aestivum L.) were evaluated in terms of their leaf temperature and shoot growth and their ion distribution responses to NaCl salinity at two concentration levels: the control with electrical conductivity (EC) of 1 dS m?1 and salinity treatment with EC of 16 dS m?1 (150 mM). A completely randomized block design with factorial treatments was employed with three replications. The results indicated that thermography may accurately reflect the physiological status of salt-stressed wheat plants. The salt stress-based increase in leaf temperature of wheat cultivars grown at 150 mM NaCl reached 1.34°C compared to the control. According to the results obtained, it appears that thermography has the capability of discerning differences of salinity tolerance between the cultivars. Three salt-tolerant wheat cultivars, namely Roshan, Kharchia and Sholeh, had higher mean shoot dry matter (0.039 g plant?1) and higher mean ratio of leaf K+/Na+ (14.06) and showed lower increase in the mean leaf temperature (0.37°C) by thermography compared to the control. This was while nine salt-sensitive cultivars, namely Kavir, Ghods, Atrak, Parsi, Bahar, Pishtaz, Falat, Gaspard and Tajan, had lower mean plant dry matter production (0.027 g plant?1), lower mean ratio of K+/Na+ (9.49) and higher mean increases in leaf temperature (1.24°C).  相似文献   

11.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

12.
In this study, the effect of land-use treatments and the feasibility of fractal dimension to quantify soil aggregate stability were investigated in the central Zagrous, Iran. For this purpose, the non-linear fractal dimension (Dnl), linear fractal dimension (Dl) and the mean weight diameter (MWD) of aggregates were compared. Soil samples from three sites with four adjacent land-use types, namely: forest area (F), cultivated lands adjacent to forest (CAF), pasture (P) and cultivated lands adjacent to pasture (CAP) were collected. Results showed that soils under cultivated lands had higher bulk density (BD) (1.30–1.38 Mg m?3) compared to the adjacent soils under forest (1.19 Mg m?3) and pasture (1.21 Mg m?3). In the 0–15 cm layer, soil organic matter (SOM) content in the cultivated plots were respectively 30% and 31% lower compared to the forest and pasture soils. The lowest CVs belonged to Dnl (5–8%) demonstrating that Dnl was more accurate than Dl (8–14%) and MWD (30–53%) methods. CAP had the largest value of Dnl, while P had the smallest value of Dnl. Difference of Dnl between forest and pasture was not significant, whereas both of them significantly differed from CAF and CAP. Dl did not differ significantly between forest and CAF. There were significant differences between forest and pasture for the measured MWD. Both fractal dimensions had negative correlation with MWD, SOM, hydraulic conductivity (HC) and macroaggregates (>0.25 mm) and positive correlation with BD and total porosity (TP).  相似文献   

13.
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O.  相似文献   

14.
Straw mulching has been used to conserve soil water and sustain dryland crop yields, but the impact of the quantity and time of mulching on soil C fractions are not well documented. We studied the effects of various amounts and times of wheat (Triticum aestivum L.) straw mulching on soil C fractions at 0–10- and 10–20-cm depths from 2009 to 2017 in the Loess Plateau of China. Treatments were no mulching (CK), straw mulching at 9.0 (HSM) and 4.5 Mg ha?1 (LSM) in the winter wheat growing season, and straw mulching at 9.0 Mg ha?1 in the summer fallow period (FSM). Soil C fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). All C fractions at 0–10 and 10–20 cm were 8–27% greater with HSM and LSM than FSM and CK. Both SOC and POC at 0–10 cm increased at 0.32 and 0.27 Mg ha?1 year?1 with HSM and at 0.40 and 0.30 Mg C ha?1 year?1 with LSM, respectively, from 2009 to 2017. Winter wheat grain yield was lower with HSM and LSM, but total aboveground biomass was greater with HSM than other treatments. All C fractions at most depths were correlated with the estimated wheat root residue returned to the soil and PCM at 0–10 and 0–20 cm was correlated with wheat grain yield. Wheat straw mulching during the growing season increased soil C sequestration and microbial biomass and activity compared with mulching during the fallow period or no mulching, regardless of mulching rate, due to increased C input, although it reduced wheat grain yield. Continuous application of straw mulching over time can increase soil C sequestration by increasing nonlabile C fractions while decreasing labile fractions. Straw mulching at higher rate and mulching during the summer fallow period had no additional benefits in soil C sequestration.  相似文献   

15.
Our knowledge of effects of land use changes and soil types on the storage and stability of different soil organic carbon (SOC) fractions in the tropics is limited. We analysed the effect of land use (natural forest, pasture, secondary forest) on SOC storage (depth 0–0.1 m) in density fractions of soils developed on marine Tertiary sediments and on volcanic ashes in the humid tropics of northwest Ecuador. The origin of organic carbon stored in free light (< 1.6 g cm?3) fractions, and in two light fractions (LF) occluded within aggregates of different stability, was determined by means of δ13C natural abundance. Light occluded organic matter was isolated in a first step after aggregate disruption by shaking aggregates with glass pearls (occluded I LF) and in a subsequent step by manual destruction of the most stable microaggregates that survived the first step (occluded II LF). SOC storage in LFs was greater in volcanic ash soils (7.6 ± 0.6 Mg C ha?1) than in sedimentary soils (4.3 ± 0.3 Mg C ha?1). The contribution of the LFs to SOC storage was greater in natural forest (19.2 ± 1.2%) and secondary forest (16.6 ± 1.0%) than in pasture soils (12.8 ± 1.0%), independent of soil parent material. The amount of SOC stored in the occluded I LF material increased with increasing silt + clay content (sedimentary soils, r = 0.73; volcanic ash soils, r = 0.58) and aggregation (sedimentary soils, r = 0.52; volcanic ash soils, r = 0.45). SOC associated with occluded I LF, had the smallest proportion of new, pasture‐derived carbon, indicating the stabilizing effect of aggregation. Fast turnover of the occluded II LF material, which was separated from highly stable microaggregates, strongly suggested that this fraction is important in the initial process of aggregate formation. No pasture‐derived carbon could be detected in any density fractions of volcanic ash soils under secondary forest, indicating fast turnover of these fractions in tropical volcanic ash soils.  相似文献   

16.
Effects of household waste, chicken manure, and cow dung on nutrient-use and carbon (C)–sequestration efficiencies and improvement of soil fertility were assessed. Application of household waste at the rate of 4 kg m?2 and cow dung at the rate of 3 kg m?2 produced the maximum yields of rice and tomato, respectively. Nutrient uptake and use efficiency were enhanced with the application of wastes. Incorporation of wastes increased C content and decreased bulk density of soils. The maximum C sequestrations were 2.6 Mg ha?1 in soils under rice cultivation and 2.9 Mg ha?1 under tomato cultivation when household waste was applied at the rate of 4 kg m?2. The greater agronomic, physiological, and recovery efficiencies of nitrogen, phosphorus, and potassium were attributed to the greater sequestration of C in soils. The residual value of pH, organic matter, nitrogen, phosphorus, and potassium indicated the fertility enhancement of soils with the application of wastes.  相似文献   

17.
The aim of this study was to assess the changes in soil organic carbon (SOC) stock in relation to the carbon (C) input from nine wheat-based cropping systems and untilled grass. The SOC pool ranged from 32.1 to 49.4 Mg ha?1 at 0–20 cm and from 94 to 171 Mg ha?1 at 0–100 cm for the arable soil, while in untilled grassland, it was higher (54 and 185 Mg C ha?1, respectively). SOC stock was observed to be lower at the unfertilized 2-year rotation and higher at the 4-year rotation with manure and mineral fertilization. The study showed a winter wheat yield decrease of 176.8 kg ha?1 for a 1- Mg ha?1 SOC stock change in the 0–20-cm soil depth. The estimated C input for SOC stock maintenance was from 266 to 340 g C m?2 year?1 for winter wheat and rotations, respectively. Additional C input did not increase the SOC pool, suggesting that arable plots had a limited ability to increase SOC. These results provide guidance for the selection of management practices to improve C sequestration.  相似文献   

18.
Abstract

Nitrogen (N) concentrations and stable N isotope abundances (δ15N) of common reed (Phragmites australis) planted in a constructed wetland were measured periodically between July 2001 and May 2002 to examine their seasonal variations in relation to N uptake and N translocation within common reed. Nitrogen concentrations in P. australis shoots were higher in the growing stage (7.5 to 24.8 g N kg?1) than in the senescence stage (4.2 to 6.8 g N kg?1), indicating N translocation from shoots to rhizomes. Meanwhile, the corresponding δ15N values were higher in the senescence stage (+12.2 to +22.4‰) than in the growing stage (+5.1 to +11.3‰). Coupled with the negative correlation (R2=0.24, P<0.05, n=18) between N concentrations and δ15N values of shoots in the senescence stage, our results suggested that shoot N became enriched in 15N due to N isotopic fractionation (with an isotopic fractionation factor, αs/p, of 1.012) during N translocation to rhizomes. However, the positive correlation between N concentrations and δ15N values in the growing stage (R2=0.19, P<0.001, n=54) suggested that P. australis relies on N re‐translocated from rhizome in the early growing stage and on mineral N in the sediment during the active growing stage. Therefore, seasonal δ15N variations provide N‐isotopic evidence of N translocation within and N uptake from external N sources by common reed.  相似文献   

19.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   

20.
Abstract

A micro-plot 15N-tracer experiment was established in three different soils of a long-term soil fertility field experiment. The nutrient-poor loam sand has been subjected to various treatments over the years and this has resulted in different organic C (0.35% – 0.86%), microbial biomass (38.3 – 100.0 µg C mic g?1 soil), clay and fine silt contents. Using the 15N-pool dilution technique, we assessed gross N-transfer rates in the field. Gross N mineralization rates varied strongly among the three plots and ranged between 0.4 and 4.2 µg N g?1 soil d?1. Gross nitrification rates were estimated to be between 0 and 2.1 µg N g?1 soil d?1. No correlation between gross N mineralization rates and the organic matter content of the soils was established. However, gross nitrate consumption rates increased with increasing soil C content. The 15N-pool dilution technique was successfully used to measure gross N transfer rates directly in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号