首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
益生菌是可添加在饲料中对动物健康产生很多益处的活微生物,其在维持胃肠道微生物平衡、免疫调节和病原体防御中起关键作用,某些特定的益生菌菌株对加强肠上皮的完整性和调节一些免疫组分也显示出一定程度的潜力。有关益生菌的作用机制是当前研究的热点,其中,在益生菌调节肠道介导的防御反应的所有可能途径中,肠屏障功能、先天和适应性黏膜免疫反应及信号传导途径被认为在针对病原菌的肠防御反应中起重要作用。作者主要针对益生菌如何与肠道内的杯状细胞黏蛋白、三叶因子(trefoil factors,tffs)、防御素、Toll样受体(Toll-like receptors,TLRs)、分泌型免疫球蛋白A(secretory immunoglobulin A,sIgA)、热休克蛋白(heat shock proteins,HSPs)和P-糖蛋白(P-glycoprotein,P-gp)相互作用而起到调节肠道先天防御反应的作用进行了概述,以期为今后研究益生菌对肠道健康及对感染病原体的肠道如何起到有益作用奠定基础。  相似文献   

2.
It is now widely recognized that probiotics have health-beneficial effects on humans and animals. Probiotics should survive in the intestinal tract to exert beneficial effects on the host's health. To keep a sufficient level of probiotic bacteria in the gastrointestinal tract, a shorter interval between doses may be required. Although adherence to the intestinal epithelial cell and mucus is not a universal property of probiotics, high ability to adhere to the intestinal surface might strongly interfere with infection of pathogenic bacteria and regulate the immune system. The administration of probiotic Lactobacillus stimulated indigenous Lactobacilli and the production of short-chain fatty acids. This alteration of the intestinal environment should contribute to maintain the host's health. The immunomodulatory effects of probiotics are related to important parts of their beneficial effects. Probiotics may modulate the intestinal immune response through the stimulation of certain cytokine and IgA secretion in intestinal mucosa. The health-beneficial effects, in particular the immunomodulation effect, of probiotics depend on the strain used. Differences in indigenous intestinal microflora significantly alter the magnitude of the effects of a probiotic. Specific probiotic strains suitable for each animal species and their life stage as well as each individual should be found.  相似文献   

3.
益生菌主要通过提高饲料营养的消化利用、提高动物免疫调节能力为宿主动物胃肠道(GIT)健康提供益生作用。益生菌通过提高肠绒毛高度、改善黏膜结构来帮助营养成分的消化吸收、增强上皮细胞紧密连接的调节功能、防御病原菌、维持细胞稳态。益生菌对于热应激引起的环境挑战,也有很好的调节功能。  相似文献   

4.
The intestinal immune system is affected by various factors during its development, such as maternal antibodies, host genes, intestinal microbial composition and activity, and various stresses (such as weaning stress). Intestinal microbes may have an important impact on the development of the host immune system. Appropriate interventions such as probiotics may have a positive effect on intestinal immunity by regulating the composition and activity of intestinal microbes. Moreover, probiotics participate in the regulation of host health in many ways; for instance, by improving digestion and the absorption of nutrients, immune response, increasing the content of intestinal-beneficial microorganisms, and inhibiting intestinal-pathogenic bacteria, and they participate in regulating intestinal diseases in various ways. Probiotics are widely used as additives in livestock and the poultry industry and bring health benefits to hosts by improving intestinal microbes and growth performance, which provides more choices for promoting strong and efficient productivity.  相似文献   

5.
Toll样受体(TLRs)是近年来备受关注的一种模式识别受体,在脊椎与非脊椎动物中具有病原体传感器的功能。TLRs对体内外特异性配体的识别是启动先天免疫的基础,并迅速增加对抗入侵病原体的保护性反应,最终激活适应性免疫。TLRs在肠道免疫对病原菌与益生菌的区分过程中发挥重要作用,同时TLRs可调控动物肠道上皮分泌抗菌肽杀灭病原菌,对肠道健康具有积极的作用。本文介绍了TLRs的种类、配体及相应的信号通路,探讨TLRs在肠道免疫调节中的关键作用。  相似文献   

6.
益生菌调节肠道菌群及免疫调节作用机理   总被引:1,自引:0,他引:1  
益生菌是指改善宿主微生态平衡而发挥有益作用,达到提高宿主健康水平和健康状态的活菌制剂及其代谢产物。本文以乳酸菌、双歧杆菌和芽孢杆菌等几种常见的食用或饲用益生菌为对象,论述其调节肠道菌群和免疫调节作用的机理。  相似文献   

7.
Recent interest has focused on the importance of intestinal immunity for the host defense, but to date, not much is known about the underlying mechanisms. The toll‐like receptor (TLR) family plays an important role in host defense through recognizing bacterial pathogen‐associated molecular patterns. Our recent research on the physiological function of food products has investigated the immunoregulatory effects of probiotic lactic acid bacteria (LAB) via TLR. Studies of swine, which often substitute for a human model, have demonstrated intestinal immunoregulation by the probiotic LAB mediated by TLR in the gut. On the basis of our study, efforts have also been made to develop a molecular immunoassay system for probiotic LAB and find novel immunostimulatory DNA sequences from probiotics and high potential immunobiotic LAB strains via TLR signaling. These findings may provide important clues at the molecular level on TLR signal transduction pathways and recognition mechanisms for the ligands. They also provide impetus to further delineate the activation mechanism of the innate immune response. In addition to identifying immunoregulatory factor immunogenics from LAB, a better understanding of intestinal immune regulation through cytokine networks holds out promise for basic food immunology research and the development of immunobiotic foods to prevent specific diseases.  相似文献   

8.
Probiotics are living microorganisms that provide a wide variety of health benefits to the host when ingested in adequate amounts.The bacterial strains most frequently used as probiotic agents are lactic acid bacteria,such as Lactobacillus reuteri,which is one of the few endogenous Lactobacillus species found in the gastrointestinal tract of vertebrates,including humans,rats,pigs and chickens.L reuteri is one of the most well documented probiotic species and has been widely utilized as a probiotic in humans and animals for many years.Initially,L reuteri was used in humans to reduce the incidence and the severity of diarrhea,prevent colic and necrotic enterocolitis,and maintain a functional mucosal barrier.As interest in alternatives to in-feed antibiotics has grown in recent years,some evidence has emerged that probiotics may promote growth,improve the efficiency of feed utilization,prevent diarrhea,and regulate the immune system in pigs.In this review,the characteristics of L reuteri are described,in order to update the evidence on the efficacy of using L.reuteri in pigs.  相似文献   

9.
益生菌兼或益生元对牛肠道菌群调节作用研究进展   总被引:1,自引:0,他引:1  
益生菌/益生元具有调节胃肠(GI)菌群平衡及活动的能力,能够显著地影响家畜肠道内菌群的结构和活动,使有益菌(主要是乳酸菌)占有生态位,成为优势菌群,抑制霉菌生长和霉菌毒素的产生。饲喂益生菌后,牛肠道中的菌群呈现多样性,群落的复杂程度增高,牛肠道菌群的微生态稳定性增强。低聚麦芽糖、低聚半乳糖等益生元则能不同程度的被有益菌分解利用,作为有益菌的生长促进剂,发挥其益生作用。目前,益生菌/益生元已被广泛应用于食品、医药保健和饲料等各个领域。随着对其深入的了解和成熟的市场或产业化发展,益生菌/益生元的应用前景很好。  相似文献   

10.
公娟 《畜牧兽医杂志》2024,43(3):101-103
益生菌是一类有益于宿主健康的活性微生物,可以通过调节家兔肠道菌群的平衡和增强肠道屏障功能来发挥作用,能够抑制有害菌的生长,提高消化道内营养物质的吸收利用,增强免疫系统的功能,从而维持肠道健康。本文从益生菌对家兔肠道菌群的影响,益生菌治疗机制的探索等方面探讨益生菌在恢复家兔肠道菌群平衡和解决腹泻中的作用,分析了当前研究的局限性和未来研究方向,有助于推动益生菌在家兔腹泻治疗中的临床应用,为家兔肠道健康提供更全面的保障。  相似文献   

11.
益生菌在健康硬骨鱼肠道中不仅起到抑制致病微生物的作用,而且更重要的是,益生菌能够刺激和增强肠道黏膜免疫系统,在肠道免疫中起重要作用。近年来,硬骨鱼黏膜免疫因其多样性及其不明确的定义,已成为热门的研究课题。硬骨鱼与水生环境直接接触,使肠道黏膜表面易受各种病原体的侵袭。免疫调节是硬骨鱼中有效的预防性措施,而益生菌能够提高肠道黏膜表面固有的免疫活性细胞和因子,对病原体起颉颃作用。益生菌主要通过口服方式进入鱼体,而肠道作为其主要靶器官,对鱼体产生特异性免疫应答。因此,关于益生菌影响肠道黏膜免疫系统的研究值得关注。相比于哺乳动物,硬骨鱼具有更加弥散的肠淋巴系统。局部免疫应答所必需的免疫细胞大量存在于肠道黏膜中,并且可以在免疫后的鱼体肠道中监测到局部免疫应答。文章综述了近年来硬骨鱼肠道黏膜免疫系统以及益生菌对硬骨鱼肠道黏膜免疫的影响,并对鱼类益生菌的进一步研究进行了展望,以期为后续研究益生菌与硬骨鱼之间相互作用提供参考。  相似文献   

12.
动物肠道存在复杂的微生物群落,适宜的微环境有利于多种肠道微生物的定植生长。肠道健康是保证动物机体健康的基础,也是当前国内外学者所关注的热点问题。益生菌是对肠道健康有益的微生物,在改善动物肠道健康领域具有极大的潜力。益生菌对病原微生物侵袭有一定的抑制作用,对部分病毒也具有一定的预防及清除作用,但不同菌株作用效果存在较大差异。作者首先将益生菌对肠道健康的保护概括为益生菌抑制病原菌入侵和定植、改善肠道屏障功能、维持肠道健康菌群、提高机体免疫力4种方式,并探讨了不同菌株的作用方式;其次简述了益生菌抗肠道病毒的作用机制,其中,益生菌通过间接方式调节机体免疫是其抗病毒的主要方式;最后讨论了近年来益生菌在轮状病毒、流行性腹泻病毒和传染性胃肠炎病毒中应用的研究进展,并对益生菌的发展前景进行了展望,以期为益生菌在改善动物肠道健康的研究及产品的开发方面提供一定的参考依据。  相似文献   

13.
Lactic acid bacteria play an essential role in the food industry in the manufacture of many fermented products (cheese, yogurt, fermented vegetables, etc.). Application of these organisms is now being extended to the area of health improvement, as their probiotic activities become known. Probiotics are defined as viable microorganisms that exert a beneficial effect on the health of the host when they are ingested in sufficient quantity. Lactic acid bacteria and bifidobacteria isolated from the human intestine are the most common probiotics used for human consumption. The development of new probiotics with new beneficial effects is eagerly awaited in the food industry. This review introduces Lactococcus, which are one of the genera of lactic acid bacteria and are mainly isolated from dairy products and fermented vegetables, as new probiotics, focusing especially on Lactococcus lactis H61, which improves skin status in Japanese women with oral intake of heat‐killed or live cells. The deduced mechanisms associated with the beneficial effects of strain H61 are also discussed.  相似文献   

14.
Probiotics are living microorganisms that provide a wide variety of health benefits to the host when ingested in adequate amounts. The bacterial strains most frequently used as probiotic agents are lactic acid bacteria, such as Lactobacillus reuteri, which is one of the few endogenous Lactobacillus species found in the gastrointestinal tract of vertebrates, including humans, rats, pigs and chickens. L. reuteri is one of the most well documented probiotic species and has been widely utilized as a probiotic in humans and animals for many years. Initially, L. reuteri was used in humans to reduce the incidence and the severity of diarrhea, prevent colic and necrotic enterocolitis, and maintain a functional mucosal barrier. As interest in alternatives to in-feed antibiotics has grown in recent years, some evidence has emerged that probiotics may promote growth, improve the efficiency of feed utilization, prevent diarrhea, and regulate the immune system in pigs. In this review, the characteristics of L. reuteri are described, in order to update the evidence on the efficacy of using L. reuteri in pigs.  相似文献   

15.
The gastrointestinal microbiota is extremely important for human and animal health. Investigations into the composition of the microbiota and its therapeutic modification have received increasing interest in human and veterinary medicine. Probiotics are a way of modifying the microbiota and have been tested to prevent and treat diseases. Probiotics are proposed to exert their beneficial effects through various pathways. Production of antimicrobial compounds targeting intestinal pathogens, general immune stimulation, and colonization resistance are among these mechanisms. Despite widespread availability and use, scientific, peer‐reviewed evidence behind commercial probiotic formulations in horses is limited. Additionally, quality control of commercial over‐the‐counter products is not tightly regulated. Although promising in vitro results have been achieved, in vivo health benefits have been more difficult to prove. Whether the ambiguous results are caused by strain selection, dosage selection or true lack of efficacy remains to be answered. Although these limitations exist, probiotics are increasingly used because of their lack of severe adverse effects, ease of administration, and low cost. This review summarizes the current evidence for probiotic use in equine medicine. It aims to provide veterinarians with evidence‐based information on when and why probiotics are indicated for prevention or treatment of gastrointestinal disease in horses. The review also outlines the current state of knowledge on the equine microbiota and the potential of fecal microbial transplantation, as they relate to the topic of probiotics.  相似文献   

16.
The intestinal mucosa represents the most active defense barrier against the continuous challenge of food antigens and pathogenic microorganisms present in the intestinal lumen. Protection against harmful agents is conferred by factors such as gastric acid, peristalsis, mucus, intestinal proteolysis, and the intestinal biota. The establishment of beneficial bacterial communities and metabolites from these complex ecosystems has varying consequences for host health. This hypothesis has led to the introduction of novel therapeutic interventions based on the consumption of beneficial bacterial cultures. Mechanisms by which probiotic bacteria affect the microecology of the gastrointestinal tract are not well understood, but at least three mechanisms of action have been proposed: production/presence of antibacterial substances (e.g., bacteriocins or colicins), modulation of immune responses and specific competition for adhesion receptors to intestinal epithelium. The rapid establishment of bacterial communities has been thought to be essential for the prevention of colonization by pathogenic bacteria. Some animal models suggest that the reduction in bacterial translocation in neonatal animals could be associated with an increase in intestinal bacterial communities and bacteriocin-like inhibitory substances produced by these species. This review emphasizes the role of the intestinal microbiota in the reduction of the gastrointestinal infections and draws heavily on studies in poultry.  相似文献   

17.
饲用益生菌对动物肠道免疫调节的作用机理   总被引:1,自引:0,他引:1  
益生菌即一类以活菌为主的新型饲料添加剂,其活菌能在动物肠道内定植,维护肠道菌群平衡,并刺激肠黏膜免疫系统,引起体液免疫和细胞免疫应答,从而增强机体抗病力.本文对益生菌的免疫刺激及其作用机理进行综述.  相似文献   

18.
肠道易激综合征(irritable bowel syndrome,IBS)是一种常见的功能性胃肠道疾病,患者伴有腹痛、便秘或腹泻现象,严重影响其生活质量。益生菌能够调节肠道菌群平衡,加强肠道生物的屏障功能,参与免疫系统发挥作用,为治疗IBS提供了新思路。本文对采用益生菌治疗IBS的研究进展进行综述,阐明了IBS的亚型分类、IBS患者的肠道菌群变化以及益生菌治疗IBS的机制和效果,为益生菌治疗IBS提供参考,拓宽益生菌的应用范围。  相似文献   

19.
To meet the ever‐increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as ‘bio‐friendly agents’, such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non‐pathogenic and non‐toxic micro‐organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.  相似文献   

20.
王怀禹 《猪业科学》2020,37(5):60-63
益生菌通过调控猪肠道菌群的数量和丰度、产生生物活性物质和降低肠道p H等路径有效改善肠道微生态环境,增加猪体免疫力,促进猪肠道对营养物质的吸收,提高生产性能以及改善猪胴体品质。文章综述了益生菌的种类及特性、益生菌的作用机理及其在猪生产中的应用,以期为益生菌改善猪肠道健康的深入研究提供理论支持和实践借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号