首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
【目的】以葵花籽仁为原料,优化提取绿原酸的工艺条件。【方法】以乙醇为提取溶剂,绿原酸提取率为指标,采用超声波微波辅助法提取葵花籽绿原酸,在单因素试验的基础上,选取液料比、超声波功率、微波功率为影响绿原酸提取率的主要因素,采用响应面试验方法对绿原酸提取工艺进行优化,并对绿原酸提取率的二次回归模型进行分析。【结果】单因素试验结果表明,绿原酸的提取率随着液料比的增加呈现先增大后保持不变的趋势,而随着乙醇体积分数、超声波功率、微波功率、微波辐射时间的增加呈现先增大后减小的变化趋势。响应面法优化的绿原酸最佳提取工艺条件为:液(mL)料(g)比25.47∶1,超声波功率307.1W,微波功率539.36W。经过修正得到的最佳工艺条件为:液料比25∶1,超声波功率300 W,微波功率540 W,乙醇体积分数65%,微波辐射时间90s,此时绿原酸的提取率最高,可以达到3.27%。【结论】超声波微波辅助法提取葵花籽绿原酸具有操作简单、时间短、提取率高等特点。  相似文献   

2.
【目的】优化珊瑚菌三萜的微波提取工艺,为珊瑚菌三萜的工业化生产和综合利用提供理论依据。【方法】以珊瑚菌三萜提取率为响应值,考察提取时间、微波温度、乙醇体积分数、料(g)液(mL)比和微波功率对珊瑚菌三萜提取率的影响,在单因素试验基础上,通过Box-Behnken响应面法,确定其最佳提取工艺。【结果】珊瑚菌三萜的最佳提取工艺条件为微波功率500 W、微波温度50℃、乙醇体积分数80%、微波时间150s、料液比1∶30,在此条件下,三萜提取率为1.320%。【结论】利用Box-Behnken响应面设计法得到了珊瑚菌三萜微波提取优化工艺,且该工艺方便可行。  相似文献   

3.
【目的】辣木总蛋白含量高,但溶解差,水溶性蛋白提取率低,本研究采用超声波辅助酸溶法提取辣木叶中水溶性蛋白。【方法】以辣木叶为原料,分析超声波功率、超声时间、提取温度、水浴时间和溶液pH值6个因素对其水溶性蛋白提取率的影响,在单因素试验的基础上,通过响应面法优化酸法提取辣木蛋白的最佳工艺条件。【结果】响应面优化结果表明:对蛋白提取率的影响依次为溶液pH料液比超声时间水浴温度,最优提取条件为料液比1∶70 (g∶mL)、超声波功率300 W、超声时间30 min、浸提水浴温度53℃、溶液pH 1.4、水浴浸提时间60 min,此条件下的水溶性蛋白提取率最高,可达(79.36±1.13) mg/g,与预测值80.194 mg/g基本相符。【结论】本研究提高了水溶性蛋白的提取率,对辣木产业发展及蛋白系列产品开发及蛋白活性研究具有一定的促进意义。  相似文献   

4.
为了有效提高山楂多糖的提取率,采用微波法,对料液比、浸提温度、微波功率和微波时间4个因素进行正交试验。结果表明:采用料液比1︰20、浸提温度60℃、微波功率560 W、微波时间3分钟的工艺提取山楂多糖效率较高,平均提取率为1.53%;且提取效果较稳定,重复性较好。该工艺在一定程度上提高了山楂多糖的提取率,且速度快、操作便捷,是理想的山楂多糖提取新工艺。  相似文献   

5.
【目的】优化香菇多糖的微波提取工艺,为香菇多糖的工业化生产和综合利用提供理论依据。【方法】以香菇多糖提取率为响应值,以液(mL)料(g)比(15∶1,20∶1,25∶1,30∶1,35∶1)、微波功率(500,600,700,800,900 W)及微波时间(2,4,6,8,10min)为因素进行单因素试验。在单因素试验基础上,采用Box-Behnken响应面设计法,建立数学模型,筛选最佳提取工艺条件。【结果】通过二次回归模型响应面分析,获得香菇多糖的最佳提取工艺条件为,液料比35∶1、微波功率900 W、微波时间8.5 min;在此条件下,多糖提取率达6.49%,与最大理论预测值(6.63%)相对误差小于5%。【结论】利用Box-Behnken响应面设计法得到了香菇多糖微波提取优化工艺,该工艺方便可行。  相似文献   

6.
【目的】研究微波辅助法提取枇杷叶黄酮类化合物的最佳工艺条件,为进一步开发利用枇杷叶资源提供科学依据。【方法】以枇杷叶黄酮类化合物含量作为评价指标,探讨微波功率(W)、乙醇浓度(%)、料液比(g∶mL)和提取时间(s)对枇杷叶黄酮类化物提取率的影响,在单因素试验的基础上,利用正交试验筛选微波辅助提取枇杷叶黄酮类化物的最佳工艺条件。【结果】微波辅助乙醇提取枇杷叶黄酮类化合物的影响因素主次顺序为:乙醇深度〉料液比〉微波时间〉微波功率,其最佳提取工艺条件为:乙醇浓度50%,微波功率125W,微波时间100s,料液比1∶10(g∶mL)。在最佳提取工艺条件下,得到黄酮类化物含量为0.712%。【结论】微波辅助乙醇提取枇杷叶黄酮类化合物得率高,且提取时间短、乙醇用量少,是提取枇杷叶黄酮类化合物的有效方法。  相似文献   

7.
玉澜  张春艳 《南方农业学报》2012,44(6):1018-1021
【目的】研究微波辅助法提取枇杷叶黄酮类化合物的最佳工艺条件,为进一步开发利用枇杷叶资源提供科学依据。【方法】以枇杷叶黄酮类化合物含量作为评价指标,探讨微波功率(W)、乙醇浓度(%)、料液比(g∶mL)和提取时间(s)对枇杷叶黄酮类化物提取率的影响,在单因素试验的基础上,利用正交试验筛选微波辅助提取枇杷叶黄酮类化物的最佳工艺条件。【结果】微波辅助乙醇提取枇杷叶黄酮类化合物的影响因素主次顺序为:乙醇深度>料液比>微波时间>微波功率,其最佳提取工艺条件为:乙醇浓度50%,微波功率125 W, 微波时间100 s, 料液比1∶10(g∶mL)。在最佳提取工艺条件下,得到黄酮类化物含量为0.712%。【结论】微波辅助乙醇提取枇杷叶黄酮类化合物得率高,且提取时间短、乙醇用量少,是提取枇杷叶黄酮类化合物的有效方法。  相似文献   

8.
【目的】优化黑豆异黄酮的最佳提取工艺,为黑豆的加工利用提供参考。【方法】以东北青仁黑豆为原材料,运用超声波微波辅助提取黑豆异黄酮,通过单因素试验分析料(g)液(mL)比、乙醇体积分数、超声波功率、微波功率、微波辐射时间5个因素对黑豆异黄酮得率的影响。以单因素试验结果为基础,选择乙醇体积分数、超声波功率、微波辐射时间3个影响黑豆异黄酮得率的主要因素,以异黄酮得率为指标对提取工艺进行响应面优化分析,获取提取工艺最佳条件并进行验证。【结果】单因素试验结果表明,所选择的5个因素对黑豆异黄酮得率均有不同程度影响。其中当料液比达到1∶20时,黑豆异黄酮得率达到最大,为0.421%;超声波功率为300 W时黑豆异黄酮得率最大,为0.430%;当微波功率达到400W时黑豆异黄酮得率最大,为0.419%;微波辐射时间为120s时黑豆异黄酮得率最大,为,0.439%;乙醇体积分数为60%时黑豆异黄酮得率最大,为0.431%。响应面优化的黑豆异黄酮超声波微波辅助提取的最佳工艺条件为:料(g)液(mL)比1∶20、乙醇体积分数62%,超声波功率310W,微波功率420W,微波辐射时间120s,在此条件下黑豆异黄酮的得率为(0.473±0.005)%,较单因素最高提取得率提高了6.9%。【结论】用超声波微波辅助法提取黑豆异黄酮具有用时短、操作简单、得率较高等特点,可用于工业化生产黑豆异黄酮。  相似文献   

9.
为了有效提高山楂多糖的提取率,采用微波法,对料液比、浸提温度、微波功率和微波时间4个因素进行正交试验。结果表明:采用料液比1︰20、浸提温度60℃、微波功率560 W、微波时间3分钟的工艺提取山楂多糖效率较高,平均提取率为1.53%;且提取效果较稳定,重复性较好。该工艺在一定程度上提高了山楂多糖的提取率,且速度快、操作便捷,是理想的山楂多糖提取新工艺。  相似文献   

10.
铁棍山药水溶性粗多糖提取工艺的研究   总被引:7,自引:2,他引:5  
研究确立了山药多糖微波辅助水浴法提取工艺与提取率的数学模型。在单因素试验的基础上,通过响应曲面法研究分析了微波功率、微波时间、料液比对山药多糖提取率的影响,并建立了微波辅助水浴法提取山药多糖的最佳工艺∶料液比1∶25、微波时间93 s、微波功率500 W、水浴温度80℃、水浴时间2.5 h;在此条件下山药多糖的提取率达到10.56%。  相似文献   

11.
以春萝卜品种"韩国白玉"作为试验材料,以叶长、叶宽、叶干重、叶鲜重等作为指标,计算出叶面积与有关指标的回归方程。结果表明这些回归方程与指标的关系均达极显著水平。这为萝卜叶面积的测定提供了一个简单实用的测定方法,特别是通过叶长、叶宽与叶面积的回归方程可不破坏植株从而测出田间萝卜植株的叶面积。  相似文献   

12.
研究了 3个美国转Bt基因抗虫棉品种和 2个国产非抗虫棉品种 (G hirsutumL )的叶片生长特性 ,结果表明 :主茎叶数随生育进程缓慢增加 ,至打顶 (8月 1日 )后迅速下降 ;果枝叶数随生育进程迅速增加 ,至最大值 (9月 1日 )后又迅速下降 ;果枝叶数是主茎叶数的 3~ 4倍。主茎叶平均单叶面积是果枝叶的 2~ 3倍 ,单株总果枝叶面积是总主茎叶面积的 2倍左右。叶片厚度随生育进程持续增加 ;果枝叶比主茎叶厚。叶面积指数最大值出现在盛铃期 (8月 1日 )。品种间主茎叶数、面积、厚度均有差异 ,而果枝叶除数量有差异外 ,面积和厚度相差无几  相似文献   

13.
为探索烘烤管理过程中减工降本途径,对烟夹和挂竿2种装烟方式进行烟叶烘烤,从装烟量、装烟用工、烤后烟叶质量性状和经济性状进行对比试验。结果表明:采用烟夹方式比挂竿方式,装烟量增加22.5%~30.9%,综合用工降低约44.4%,用工成本降低73.9%~76.9%,中上等烟比例增加1.52%~2.99%,均价增加2.8%~9.8%,对烟叶内在化学成分协调有一定改善作用。采用烟夹装烟能够实现烟叶烘烤减工降本、提质增效。  相似文献   

14.
【目的】叶片形状系数(α)为测量作物的叶面积和叶面积指数提供了简单快捷的方法。然而,以往研究表明对作物叶片形状系数的选取存在很大的随意性,缺乏统一标准,且通常将其视为常数,不考虑它的时间和空间变异性。为解决这一问题,文章对陕西关中地区夏玉米不同生长阶段和不同叶位叶片形状系数的时间和空间变异性进行了深入研究。【方法】选取2015年6—10月生长季6个夏玉米品种,将玉米生育期划分为三叶、拔节、抽雄、开花、吐丝、成熟等6个不同生长阶段,每6天采样一次,测量叶片面积(LA)、叶片长度(L)和宽度(W),计算各个阶段的α值,同时对比α值在单个玉米植株不同叶位之间的差异。然后分别建立线性、二次、对数等3类共5个叶面积估算模型,以RMSE、RRMSE和ARE 3个统计量作为评价指标,对各叶片面积估算模型的精度进行评价。【结果】对全生育期6个夏玉米品种的760个叶片的面积和长宽乘积进行线性回归分析,夏玉米叶片形状系数均值约为0.78;在被验证的5种叶面积估算模型中,叶面积模型LA=α×L×W,其中α=0.78时精度最高,其相对均方根误差(RRMSE)约为9.50%,绝对相对误差(ARE)约为6.96%。α值范围为0.72—0.87,并随玉米生育期的变化而变化,自三叶期到开花期逐渐增大到全生育期最大值0.87,开花后缓慢下降至0.78,其中开花期叶片的α值与开花前各阶段的α值存在显著差异,而与开花后各阶段的α值不存在显著差异。不同熟性的夏玉米品种之间叶片α值也只在开花、吐丝期表现显著差异。不同叶型叶片α值表现出不同的变化规律,三叶期到拔节前,短宽型叶片的α值大于细长型叶片,此后一直到成熟期,细长型叶片的α值则大于短宽型叶片。在单个植株不同叶位叶片之间,α值变异性明显,开花期、吐丝期、成熟期均呈现出两头大中间小的规律,其中植株中部棒三叶位置α均值最为稳定,为0.78,对应的标准差在0.05以内,而植株上部和下部α均值约为0.84,对应的标准差在0.03—0.10。其中拔节、抽雄期不同叶位叶片的α值不存在显著差异,而在开花、吐丝、成熟期则表现出显著差异。【结论】叶面积模型LA=0.78×L×W更适于估算田间夏玉米叶片面积,较一般采用叶片性状系数0.75时提高模拟精度(ARE)3.86%。应在不同的生长阶段和不同叶位分别采用不同的叶片形状系数,这样才能进一步提高玉米叶面积估算的精度。  相似文献   

15.
针对传统方法和叶面积仪法测定作物叶面积、叶长、叶宽等参数费时费力,成本高等问题,提出苹果叶面积、叶长、叶宽和周长的图像测定法。首先采用颜色空间转换法转换RGB(红、绿、蓝)图为HIS(色调、亮度、饱和度)图,并以大津法(Otsu)阈值色调(H)获取二值图像;再根据二值图中苹果叶边缘像素坐标分布特征,计算叶长、叶宽和叶周长,根据苹果叶片像素数计算叶面积;最后对叶长、叶宽和叶面积的计算值与实测值之间进行均方根误差(RMSE)和决定系数(R~2)计算,并以测定硬币周长的方式验证周长算法。结果表明:苹果叶面积、叶长、叶宽的RMSE值分别为0.58cm~2、0.46和0.10cm,R~2值分别为0.99、0.93、0.97,测定的1元、5角、1角硬币的周长分别为7.68、6.42和6.10cm。RMSE取值较小和R~2取值较高表明叶面积、叶长和叶宽算法结果可靠,周长算法验证结果表明周长计算值与实测值之间差异较小。  相似文献   

16.
为系统比较荷叶、箬叶、芦苇叶、槲叶这4种常见粽叶的超声提取物对金黄色葡萄球菌、枯草芽孢杆菌、铜绿假单胞菌、大肠埃希菌、肠炎沙门氏菌等食物致病菌的抑菌活性与稳定性,测定了抑菌圈直径、最低抑菌浓度(MIC)、最小杀菌浓度(MBC)与细胞膜渗透性,以及热稳定性、pH值稳定性与紫外照射稳定性。结果表明,在4种提取物中,荷叶、芦苇叶提取物的抑菌圈直径较大,对枯草芽孢杆菌、铜绿假单胞菌、肠炎沙门氏菌的抑菌圈直径几乎均明显(P<0.05)大于山梨酸钾、苯甲酸钠。荷叶提取物对所有致病菌的MIC与MBC最小;4种提取物对枯草芽孢杆菌、铜绿假单胞菌的MIC最小,对枯草芽孢杆菌、铜绿假单胞菌的MBC相同;浓度达到0.5倍MIC值及以上的提取液浓度可显著(P<0.05)改变微生物的细胞膜通透性。这4种粽叶提取物可有效抑制致病菌的生长,并具有紫外照射稳定性与热稳定性,在pH值5~7的弱酸性与中性条件下的抑菌作用稳定。  相似文献   

17.
18.
基于生物量的水稻叶片主要几何属性模型研究   总被引:7,自引:3,他引:4  
 【目的】构建基于生物量的水稻叶片主要几何属性模型,为水稻株型设计与调控提供理论依据。【方法】以两优108、86优8、南粳43及扬稻6号为材料,设置品种、氮肥与密度田间试验,观测水稻主茎不同叶位叶片长度和宽度,分析了水稻主茎叶片长和宽的关系、比叶重(SLW)随叶位的变化规律,以及水稻叶片干重与叶长和叶宽的关系,构建基于生物量的水稻叶片主要几何属性模型。【结果】叶长与叶宽的关系可用幂指数方程表达,比叶重随叶位呈二次曲线变化。采用独立的试验资料检验模型,主茎叶片叶长、叶宽模拟值与实测值的根均方差(RMSE)分别为2.55和0.06 cm。【结论】几何属性模型可较好地模拟不同生长条件下水稻主茎不同叶位叶片的主要几何属性,为生长模型与形态结构模型的结合奠定了基础。  相似文献   

19.
通过对黔北高山区不同种植密度及不同生育时期烤烟冠层结构参数的测定,研究了烤烟冠层特征参数的动态变化。结果表明,在定行距(110 cm)的条件下,株距50~75 cm的烤烟单株叶面积积累量差异不大,三者单株最大叶面积积累量比株距38~43 cm高出0.58~0.66 m2。株距50 cm的烤烟最大群体叶面积积累量分别比株距75、60、43、38 cm高出0.96、0.42、0.70、0.42 m2/m2。株距低于或高于50 cm均导致烤烟单株或群体叶面积积累速率的降低。种植密度与中部叶位及垄面透光率呈负相关,与叶片垂直率及叶向值呈正相关;株距低于50 cm烤烟中部叶位和垄面的透光率明显降低,叶片垂直率及叶向值明显增加。由此可见,在黔北高山区植烟生态条件下,株距50 cm的种植密度既能保证烤烟中部叶位及垄面的透光率,又有利于单株及群体叶面积协调发展。  相似文献   

20.
烟叶的造碎除了与烟叶质量有关外,还与加工过程中的温湿度、工艺参数等有关。本文分析了烟叶加工过程中烟叶造碎的原因,烟叶造碎与烟叶质量的关系,并系统地分析了如何降低烟叶造碎,旨在为降低烟叶造碎、提高原料利用率提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号