首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MEF2C基因能够控制肌细胞分化过程中的基因转录,特别在骨骼肌、心肌和平滑肌中介导细胞的分化。本研究将猪 MEF2C 基因化学合成后经 Bam HI 和 Asc I 双酶切后克隆到慢病毒表达载体 pLen-ti6.3_MCS_IRES2-EGFP中,获得的重组质粒用限制性内切酶酶切分析和测序鉴定;利用慢病毒阴性对照侵染靶细胞C2C12来确定最佳MOI值以及靶细胞最适抗生素Blasticidin剂量。结果显示猪MEF2C基因成功克隆到慢病毒表达载体中;该重组质粒侵染靶细胞C2C12的最佳MOI值为300;靶细胞抗生素的筛选剂量为4μg/mL,维持剂量为3μg/mL上述试验为建立MEF2C稳定过表达细胞系提供了前期工作基础。  相似文献   

2.
目的:探索H5N1亚型禽流感病毒在MDCK中增殖规律,确定最佳增殖条件。方法将H5N1亚型禽流感病毒接种到6孔板培养的MDCK细胞进行增殖试验,检测不同病毒感染量、不同浓度TPCK-胰酶,接毒后不同时间病毒的HA滴度。根据确定的最佳增殖条件将病毒接种到微载体培养的MDCK细胞中进行大规模增殖。结果:最佳病毒增殖条件接毒量MOI为5×10-4、TPCK-胰酶浓度为4μg/mL,在5 L生物反应器中重复验证,获得稳定的试验结果,病毒血凝价最高为8 log2。结论:本研究为禽流感疫苗的生物反应器规模化生产奠定了基础。  相似文献   

3.
目的:探索重组禽流感病毒H7N9 H7-Re1株的最佳培养条件,为规模化生产提供参数。方法:通过分析病毒培养液的血清浓度、温度、pH、胰酶终浓度和病毒接种量、收获时间来优化病毒在MDCK上的最佳培养条件。结果:重组禽流感病毒H7N9 H7-Re1株在MDCK悬浮细胞上增殖的最佳培养条件为按接种量MOI 10~(-3),于胰酶终浓度为5μg/L、温度35.0℃、pH7.3±0.1的无血清病毒培养液中培养,收获时间为48~60 h,以48 h最佳。  相似文献   

4.
腺病毒与慢病毒感染猪原代细胞的比较研究   总被引:2,自引:0,他引:2  
本实验旨在探究腺病毒和慢病毒侵染猪原代细胞的最佳感染复数(MOI)和侵染时间,确定较优的侵染方式。实验选择体外分离培养猪骨骼肌卫星细胞、前体脂肪细胞和骨髓间充质干细胞后,分别用腺病毒(MOI=0、50、100、200、500、1 500)和慢病毒(MOI=0、30、50、80、100、300)感染细胞,每隔24 h在荧光显微镜下观察记录细胞中绿色荧光蛋白的表达情况。结果表明:当腺病毒MOI值为500、慢病毒MOI值为80,侵染4 d后,3种细胞荧光强度均较强且细胞形态完好。相比较而言,腺病毒能快速高效侵染猪骨骼肌卫星细胞;而对于猪前体脂肪细胞和猪骨髓间充质干细胞,2种病毒侵染速度相近,但慢病毒的侵染效率和荧光强度更高。因此,对于猪骨骼肌卫星细胞,选取腺病毒作为外源基因载体更为合适;对于猪前体脂肪细胞和猪骨髓间充质干细胞,慢病毒的侵染效果则更好。  相似文献   

5.
试验旨在建立水牛原代体细胞慢病毒感染体系。通过比较慢病毒(lentivirus)感染水牛颗粒细胞(buffalo granulosa cell,BuGC)、水牛乳腺上皮细胞(buffalo mammary epithelial cell,BuMEC)、水牛成纤维细胞(buffalo fibroblast cell,BuFC)的效率及荧光强度,筛选出3种水牛原代体细胞的最佳感染复数(MOI)。分离培养获得BuGC、BuMEC及BuFC。将慢病毒质粒pLVX-Puro-GFP和包装质粒pSPAX2、pMAD2.G脂质体转染HEK293T细胞,于转染后48和72 h收集病毒并通过稀释计数法测定慢病毒滴度。将慢病毒按不同的感染复数(100、200、400、600、800)感染BuGC、BuMEC和BuFC,感染72 h后于倒置荧光显微镜下观察拍照,统计感染效率及荧光强度。慢病毒感染3种水牛原代体细胞后,用嘌呤霉素筛选。结果显示,在MOI≤200时,慢病毒感染后细胞荧光强度BuMEC最强,而BuGC和BuFC间无显著差异;在MOI≥400时,慢病毒感染后细胞荧光强度为:BuMECBuGCBuFC。在MOI=100时,慢病毒感染效率为:BuGCBuMECBuFC;在MOI=200时,BuMEC和BuGC感染效率达到100%;在MOI=800时,BuFC感染效率达到100%。不同细胞类型对慢病毒的毒性耐受存在差异,在嘌呤霉素的筛选和维持下,获得了3种水牛原代体细胞绿色荧光蛋白(green fluorescent protein,GFP)过表达慢病毒稳转细胞株。慢病毒感染BuMEC、BuGC、BuFC的最佳MOI分别为200、400和800;3种水牛原代体细胞均能通过慢病毒获得过表达外源基因细胞株。本研究结果为水牛的乳腺组织发育分化、泌乳调控、生殖发育及转基因动物制备等提供了较好的细胞模型。  相似文献   

6.
为建立基于无血清悬浮培养细胞生产新城疫病毒(NDV)的工艺,本研究首先筛选了适于NDV增殖的乳仓鼠肾细胞(BHK-21)单克隆细胞株,并将鸡胚适应的NDV在筛选获得的细胞株(BHK-v002)中传代,获得细胞适应的NDV。进一步采用单因素实验法检测病毒感染复数(MOI)、TPCK-胰酶浓度、细胞培养液的稀释比例等工艺参数对病毒效价的影响。结果显示,NDV在无血清培养的BHK-v002细胞中增殖的最适条件为:当细胞生长至约9.0×10^6个/mL时,以培养液.新鲜培养基为2:1的比例补加新鲜培养基,使细胞密度达6.0×10^6个/m L,按MOI为0.005接种NDV LaSota株,TPCK-胰酶终浓度为5μg/mL。接种病毒后96 h收获病毒液的HA效价为8.5 log2HAU/25μL,单细胞产毒量(Svy)达到1 685.9病毒颗粒/细胞,半数组织细胞感染剂量(TCID50)为7.9 log10TCID50/100μL。本研究确定了NDV LaSota株在BHK-21细胞悬浮培养中的增殖条件,建立了基于BHK-21细胞无血清悬浮培养体系中NDV的生产工艺,该工艺操作简便,易于放大,为当前ND疫苗的鸡胚生产工艺提供了候选替代方案。  相似文献   

7.
试验旨在建立水牛原代体细胞慢病毒感染体系。通过比较慢病毒(lentivirus)感染水牛颗粒细胞(buffalo granulosa cell,BuGC)、水牛乳腺上皮细胞(buffalo mammary epithelial cell,BuMEC)、水牛成纤维细胞(buffalo fibroblast cell,BuFC)的效率及荧光强度,筛选出3种水牛原代体细胞的最佳感染复数(MOI)。分离培养获得BuGC、BuMEC及BuFC。将慢病毒质粒pLVX-Puro-GFP和包装质粒pSPAX2、pMAD2.G脂质体转染HEK293T细胞,于转染后48和72 h收集病毒并通过稀释计数法测定慢病毒滴度。将慢病毒按不同的感染复数(100、200、400、600、800)感染BuGC、BuMEC和BuFC,感染72 h后于倒置荧光显微镜下观察拍照,统计感染效率及荧光强度。慢病毒感染3种水牛原代体细胞后,用嘌呤霉素筛选。结果显示,在MOI≤200时,慢病毒感染后细胞荧光强度BuMEC最强,而BuGC和BuFC间无显著差异;在MOI≥400时,慢病毒感染后细胞荧光强度为:BuMEC>BuGC>BuFC。在MOI=100时,慢病毒感染效率为:BuGC>BuMEC>BuFC;在MOI=200时,BuMEC和BuGC感染效率达到100%;在MOI=800时,BuFC感染效率达到100%。不同细胞类型对慢病毒的毒性耐受存在差异,在嘌呤霉素的筛选和维持下,获得了3种水牛原代体细胞绿色荧光蛋白(green fluorescent protein,GFP)过表达慢病毒稳转细胞株。慢病毒感染BuMEC、BuGC、BuFC的最佳MOI分别为200、400和800;3种水牛原代体细胞均能通过慢病毒获得过表达外源基因细胞株。本研究结果为水牛的乳腺组织发育分化、泌乳调控、生殖发育及转基因动物制备等提供了较好的细胞模型。  相似文献   

8.
针对小鼠RAW264.7细胞IRG1基因设计4个RNA干扰靶位,筛选出最佳干扰序列构建shRNA慢病毒载体质粒并包装获得慢病毒颗粒,进而经嘌呤霉素筛选获得稳转细胞系,实现IRG1基因在RAW264.7细胞基因表达的沉默。并通过布鲁菌16M株及M5株感染基因沉默细胞对IRG1基因在布鲁菌感染中的作用进行研究。结果表明,慢病毒介导的shRNA高效、稳定地沉默了IRG1基因的表达,布鲁菌侵染RAW264.7细胞后IRG1基因表达上调。本试验为IRG1基因及相关调控基因抗布鲁菌病作用研究奠定了基础。  相似文献   

9.
为了探索重组禽流感病毒H5亚型Re-7株在MDCK细胞上的增值规律,确定最适的接毒量与最佳收获时间。将重组禽流感病毒H5亚型Re-7株接种至100 L生物反应器全悬浮无血清培养的MDCK细胞进行增殖试验,检测不同病毒感染量,接种后不同时间病毒的HA、TCID50以及EID50。根据确定的最佳增值条件将病毒接种到MDCK细胞中进行大规模增殖培养。确定最适接毒量MOI为10~(-2),最佳收获时间为60 h。在100 L生物反应器中进行重复验证,获得稳定的试验结果,病毒HA达到1∶1024,每1 m L病毒含量达到107.33TCID50,每0.1 m L病毒含量达到106.83EID50。研究为重组禽流感病毒H5亚型Re-7株的全悬浮规模化生产提供了相对稳定的参数指标。  相似文献   

10.
针对小鼠RAW264.7细胞IRGl基N设计4个RNA干扰靶位,筛选出最佳干扰序列构建shRNA慢病毒载体质粒并包装获得慢病毒颗粒,进而经嘌呤霉素筛选获得稳转细胞系,实现IRGl基因在RAW264.7细胞基因表达的沉默。并通过布鲁菌l6M株及M5株感染基因沉默细胞对IRGl基因在布鲁菌感染中的作用进行研究。结果表明,慢病毒介导的shRNA高效、稳定地沉默了IRGl基因的表达,布鲁菌侵染RAW264.7细胞后IRGl基因表达上调。未试验为1RG1基因及相美调控基因抗布鲁菌病作用研究奠定了基础。  相似文献   

11.
旨在探究沉默固醇调节元件结合蛋白裂解激活蛋白(SREBP cleavage-activating protein,SCAP)对奶牛乳腺上皮细胞脂滴的影响,本研究构建了SCAP短发夹RNA慢病毒载体,包装感染奶牛乳腺上皮细胞,通过在培养基中添加嘌呤霉素筛选获得SCAP基因沉默稳转细胞株,采用Real-time PCR和Western blot观察基因沉默细胞株中SCAP基因和蛋白的表达,尼罗河红和油红O染色脂滴检测SCAP基因沉默及SCAP质粒瞬时转染对细胞脂滴形成的影响。结果表明,本研究成功构建了奶牛SCAP基因沉默慢病毒重组载体,感染细胞后经过5 mg·L-1嘌呤霉素筛选得到SCAP基因沉默稳转细胞株。基因检测发现,各个沉默细胞株的SCAP基因表达显著降低(P<0.05或P<0.01)。与对照组相比,RNAi-SCAP3细胞中的SCAP蛋白表达降低为对照组的0.49倍(P<0.05),脂代谢基因SCD和FAS表达也显著下降(P<0.05)。脂滴染色发现,RNAi-SCAP3沉默细胞株的脂滴含量显著低于对照组细胞(P<0.01),脂滴直径≤2.0μm的小脂滴个数增多,而直径≥2.5μm的大脂滴个数减少;将SCAP真核表达载体瞬时转染RNAi-SCAP3细胞株后发现,SCAP基因的过表达显著减少了细胞中小脂滴比例而增加了大脂滴比例(P<0.05)。本研究成功构建了SCAP基因沉默稳转细胞株,发现SCAP的表达影响了细胞脂滴直径的大小。  相似文献   

12.
《中国兽医学报》2020,(1):66-71
利用CRISPR/Cas9技术构建稳定敲除TRIF基因的RAW264.7细胞株。首先,制备Cas9表达慢病毒,感染RAW264.7细胞,通过Puromycin抗性进行初步筛选,PCR法进行鉴定。其次,设计3条特异性识别TRIF基因的sgRNA(sgTi1、sgTi2、sgTi3),将其转入稳定表达Cas9蛋白的RAW264.7细胞株,荧光显微镜观察转入效果,PCR和Western blot法验证基因敲除情况。最后,挑选基因敲除效果最佳细胞株,经TRIF激活剂诱导后,提取细胞总RNA,荧光定量PCR检测IFN-β表达水平。结果显示:感染后的RAW264.7-Cas9细胞Cas9基因扩增产物升高,说明成功获得稳定表达Cas9基因的RAW264.7细胞。含目的基因的慢病毒感染RAW264.7-Cas9细胞后,荧光显微镜下可明显观察到目的基因已成功导入;PCR结果显示,与对照组比较,分别导入sgTi1、sgTi2、sgTi3的3组RAW264.7细胞TRIF表达均受到抑制,Western blot进一步验证3组RAW264.7细胞TRIF蛋白表达均下降且sgTi1组下降最显著,说明TRIF基因敲除成功。经TRIF激活剂诱导,与RAW264.7-Cas9-NC细胞比较,敲除TRIF基因后RAW264.7细胞IFN-βmRNA水平受到明显抑制。结果表明:利用CRISPR/Cas9技术成功构建了稳定敲除TRIF基因的RAW264.7细胞株。  相似文献   

13.
髓性分化因子88(MyD88)作为TLRs/IL-1R信号通路中重要的接头蛋白,在免疫应答和疾病防御中起重要作用,作者拟通过慢病毒介导的RNA干扰技术获得MyD88基因沉默的猪小肠上皮细胞,为致病菌引起肠道疾病机制研究提供有效模型。共构建4个靶向猪MyD88基因的shRNA表达载体和1个MyD88基因高表达载体,通过实时荧光定量PCR方法鉴定瞬时共转染293细胞中MyD88基因转录水平,筛选获得干扰猪MyD88基因效率最高的shRNA表达载体,将其包装成慢病毒载体,用于建立MyD88基因稳定沉默的猪小肠上皮细胞。最终成功获得MyD88基因沉默效率达到69.3%的小肠上皮细胞,达到基因功能分析的要求。MyD88基因稳定沉默猪肠上皮细胞的获得,为猪肠道病原微生物所引起的TLRs/IL-1R信号通路作用机制的研究提供了宝贵材料。  相似文献   

14.
慢病毒介导的RNAi具有转移基因效率高,作用持久稳定等特点,成为基因治疗和基因功能研究的重要工具。本试验中将在细胞水平验证可以抑制禽流感病毒(AIV)PA、NP和PB2基因表达的miRNA克隆到pcDNATM6.2-GW/EmGFP-miR载体,构建多靶点miRNA表达载体(pcDNA6.2/PA+NP+PB2);鉴定正确后通过BP/LR重组反应将GFP和靶向AIV串联miRNA转座到慢病毒表达载体pLenti6/DEST,命名为pLenti6/PA+NP+PB2;鉴定正确后与辅助包装质粒共转染293FT,72h收集细胞上清进行病毒浓缩;采用梯度稀释法和real-timePCR法测定病毒滴度;通过感染MDCK细胞、CEF细胞及猪胎儿成纤维细胞,评价重组慢病毒的感染效率。结果,酶切和测序表明pcDNA6.2/PA+NP+PB2和pLenti6/PA+NP+PB2构建成功;浓缩后梯度稀释法检测病毒滴度为4×107TU/mL,real-timePCR法检测病毒滴度为1×108TU/mL;病毒感染MDCK细胞和猪胎儿成纤维细胞的感染效率显著高于CEF细胞的感染效率。结果表明,我们成功制备了表达靶向AIV多靶点miRNA重组慢病毒,并发现以VSVG替代了env囊膜后慢病毒对CEF细胞敏感性较低,为进一步研究AIV的防控和慢病毒介导的抗AIV转基因动物模型奠定了基础。  相似文献   

15.
为建立稳定表达施马伦贝格病毒(SBV)核衣壳(N)蛋白的BHK-21细胞系,本研究在SBV-N蛋白编码基因的C端加入6个组氨酸(6×His)标签,将其克隆至慢病毒载体p LV-EGFP-C中构建重组慢病毒质粒p LV-EGFP-SBV-N,将其与慢病毒包装质粒p Helper1.0和p Helper2.0共转染HEK-293T细胞,包装表达SBV-N蛋白的慢病毒。将重组慢病毒在聚凝胺(Polybrene)的介导下感染BHK-21细胞,采用嘌呤霉素(Puromycin)法和细胞有限稀释法筛选出一株稳定表达SBV-N蛋白的BHK-21细胞系,命名为BHK-21-EGFP-SBV-N。间接免疫荧光试验进一步表明,该细胞系能够被SBV抗体阳性动物血清和特异性单克隆抗体2C8识别。稳定表达SBV-N蛋白的BHK-21细胞系的建立,为SBV血清学检测方法的建立提供材料。  相似文献   

16.
为了解H5亚型禽流感病毒rFJ56株在MDCK全悬浮细胞上的增殖规律,确定100 L生物反应器工艺的最适接毒量和收获时间,对H5亚型禽流感病毒rFJ56株敏感的MDCK全悬浮细胞进行单克隆筛选和全悬浮驯化,筛选出对该毒株最敏感的MDCK单克隆细胞株;在摇瓶工艺的基础上,将该细胞在100 L生物反应器中接种H5亚型禽流感病毒rFJ56株,检测接种后不同时间病毒HA效价和病毒滴度(EID_(50)),确定最适接毒量和收获时间。共筛选出22株MDCK全悬浮细胞单克隆细胞株,其中5株对H5亚型禽流感病毒rFJ56株最敏感,接种后病毒HA效价均可达到9 log2;对MDCK单克隆细胞株按0.01%体积比接种H5亚型禽流感病毒rFJ56株,在100 L生物反应器中培养60 h,HA效价可达10 log2,病毒含量可达10~(8.17)EID_(50)/0.1 mL,可为H5亚型禽流感病毒无血清全悬浮培养放大工艺提供参考。  相似文献   

17.
试验分别以带有目的基因的重组慢病毒质粒(pSllV-CMV-zsGreen-puro-lncRNA77.2)和3条反义核苷酸质粒转染BRL细胞,根据绿色荧光蛋白(GFP)表达情况评估转染效率;优化过表达慢病毒的最佳感染复数,并通过嘌呤霉素筛选以得到高表达稳转株。应用荧光定量PCR方法检测lncRNA NONRATT021477.2的表达量,验证过表达效果及初步确定干扰效率最高的质粒,并进一步优化ASO质粒的转染浓度和时间曲线。结果显示,重组慢病毒以感染复数(MOI)=4转染BRL细胞48 h时,lncRNA NONRATT021477.2表达量比空病毒NC组极显著升高(P0.01),过表达效果为17倍,成功获得高表达稳转株;并且确定了干扰质粒ASO-2以250 nmol/L浓度转染BRL细胞24 h时,对靶基因水平的干扰效率最高,为78%。本试验建立了lncRNA NONRATT021477.2过表达和干扰表达质粒转染BRL细胞的最佳条件,为后续深入研究lncRNA NONRATT021477.2的生物学功能奠定基础。  相似文献   

18.
利用CRISPR/Cas9技术构建RIG-I基因敲除MDCK细胞株,并验证其生物学功能。试验设计并构建了2个靶向RIG-I基因的导向RNA(sgRNA)表达载体,与pCAG-Cas9-EGFP表达载体共转染MDCK细胞,采用PAGE胶基因型检测、定点测序和Western blot筛选细胞株;通过荧光定量PCR检测H9N2亚型禽流感病毒(AIV)感染后MAVS、IRF3、IFN-β、IL-6、Mx1 mRNA表达水平和病毒基因拷贝数,测定TCID_(50)。结果表明:获得两株稳定敲除RIG-I基因的MDCK细胞(MDCK-RIG-I~(-/-)),Western blot检测RIG-I蛋白不表达;荧光定量PCR结果显示病毒感染后MDCK-RIG-I~(-/-)的MAVS、IRF3、IFN-β、IL-6、Mx1 mRNA表达水平显著降低,表明RIG-I基因敲除后RIG-I-Ⅰ型干扰素信号通路受阻;病毒基因拷贝数、TCID_(50)测定结果显示,差异最高可分别达到野生型MDCK的2.16倍、3.19倍,表明RIG-I基因敲除后流感病毒复制增加。该研究利用CRISPR/Cas9技术建立了敲除RIG-I基因流感病毒MDCK细胞株,为研究RIG-I天然免疫应答机制奠定基础;该技术方法和策略也为流感疫苗生产及产业更新换代提供候选细胞株。  相似文献   

19.
旨在分析猪丁型冠状病毒(porcine deltacoronavirus,PDCoV)在悬浮培养的猪肾细胞LLC-PK1上的增殖特性,为PDCoV灭活疫苗的规模化生产提供细胞材料。采用逐步降血清法优化LLC-PK1细胞悬浮培养工艺;利用有限稀释法筛选PDCoV适应性细胞株;利用间接免疫荧光法鉴定PDCoV对LLC-PK1细胞的感染性;分别对PDCoV接种LLC-PK1悬浮细胞的初始密度、MOI、收毒时间、TPCK胰酶浓度等参数进行优化,确定最佳悬浮培养条件。成功筛选出可高效增殖PDCoV的单克隆悬浮细胞株LLC-PK1Sa,且利用其增殖的PDCoV可特异性的感染LLC-PK1细胞;PDCoV按MOI为10-3接种于密度为2×106 cells·mL-1的LLC-PK1Sa细胞,当TPCK胰酶终浓度达到7.5 μg·mL-1时,接毒后48 h收获的病毒液滴度最高。本研究首次实现了PDCoV在LLC-PK1Sa悬浮细胞中的高效增殖,并对悬浮培养条件进行了初步优化,可为PDCoV灭活疫苗的规模化生产提供理论参考。  相似文献   

20.
为建立基于CRISPR-Cas9技术的基因敲除细胞文库,本研究利用慢病毒载体pMD2.G、pSPAX2(HIV-1的gag-pol表达质粒)和lentiCRISPR v2-Hyg包装慢病毒,感染HeLa细胞2 d后用400μg/mL潮霉素培养液筛选两周,获得稳定表达Cas9蛋白的多克隆细胞系。利用流式细胞分选系统分选及western blot鉴定获得9株HeLa-Cas9单克隆细胞系。为获得具有高效率敲除内源基因的HeLa细胞系,利用同时表达绿色荧光蛋白(GFP)和GFP sgRNA的慢病毒感染HeLa-Cas9单克隆细胞系,经1μg/mL嘌呤霉素培养液筛选一周,流式细胞术检测表达绿色荧光蛋白细胞的百分比,以计算HeLa细胞株的敲除效率,进而建立了一株稳定表达Cas9蛋白的具有高敲除效率的HeLa单克隆细胞系。该细胞的Cas9敲除效率为87%,CCK-8检测结果表明其具有很好的细胞活性。本研究获得的具有高敲除效率的稳定表达Cas9蛋白的HeLa细胞系可以用于CRISPR敲除文库的转导,建立基因敲除细胞文库,为筛选参与特定功能的未知蛋白提供细胞平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号