首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为了解吉林省中部地区畜禽养殖温室气体的排放量和空间分布特征,根据联合国政府间气候变化化专门委员会(intergovernmental panel on climate change,简称IPCC)(2006)提供的方法,通过获取2005—2015年吉林省中部地区畜禽产量和排放因子,估算农业畜禽养殖温室气体排放量。结果表明,2005—2014年平均甲烷排放总量为1 175.70万t CO2-eq/年,氧化亚氮排放总量243.66万t CO2-eq/年;2005—2015年期间畜禽温室气体排放量呈先上升后下降趋于平缓趋势,2007—2010年排放量高于11年平均值(1 419.36万t CO2-eq/年),这与吉林省其他牛、猪、奶牛和山羊养殖数量变化有着明显关系;2005—2015年四平市、吉林市、榆树市、农安县和德惠市平均温室气体排放量为6 719.9万t CO2-eq,占吉林省中部温室气体排放量的44.21%。  相似文献   

2.
1980—2011年福建省农业甲烷排放估算研究   总被引:1,自引:0,他引:1  
基于1980—2011年福建省农业生产的相关统计数据,将稻田甲烷排放模型CH_4MOD、排放因子法和GIS相结合,模拟估算了福建省1980—2011年农业源甲烷排放量。结果表明:(1)1980—2011年福建省农业CH_4共排放1 219.71×10~4t,总体呈下降趋势;(2)福建省农业CH_4排放高值区主要分布在南平市、龙岩市和漳州市,约占福建农业CH_4排放总量的47%;(3)32 a间福建省水稻CH_4总排放877.63×104t,总体呈递减走势,年均递减率为1.96%。反刍动物肠道和动物粪便CH_4排放量均呈明显上升趋势,年均增长率分别为1.04%和2.25%;(4)不同农业源CH_4排放量差异较大,以稻田CH_4排放最高,占总排放的72%,其次是动物肠道CH_4排放,占总排放量的23%,动物粪便CH_4排放约占5%;(5)对2025年甲烷排放量进行模型预测,表明福建省农业CH_4排放量总体降低,反刍动物饲料和动物粪便管理效率的提高成为未来福建农业发展的重点。  相似文献   

3.
江苏省农业源甲烷排放清单研究   总被引:3,自引:0,他引:3  
根据农业源甲烷排放的活动数据和排放因子,采用IPCC(2006)推荐的排放系数法对2009年江苏省农业源甲烷排放量进行估算。结果显示,2009年江苏省农业源甲烷排放总量为990.348Gg,其中,水稻种植是江苏省最大的甲烷排放源,年排放量为829.577Gg,占全省总排放量的83.77%;畜禽养殖和秸秆燃烧甲烷排放较少,占甲烷排放总量的14.54%和1.69%。江苏省农业源甲烷排放平均强度为9.63t/km2.a,甲烷排放强度超过12t/km2.a的城市分别是扬州、淮安、南通市和泰州市,排放强度分别为13.88t/km2.a、13.52t/km2.a、13.48t/km2.a和12.29t/km2.a。  相似文献   

4.
重庆市畜牧业温室气体排放量评估   总被引:1,自引:0,他引:1  
畜牧业已经成为全球温室气体的主要排放源.通过开展重庆市畜牧业温室气体排放量估算及评价,结果表明,重庆市畜牧业温室气体的排放量受畜牧养殖t影响;牛是重庆市畜牧业温室气体排放中的关键排放源,对温室气体的排放贡献最大,其次是猪;农户散养反刍动物肠道发酵甲烷排放量比规模化饲养的排放量高.通过提高畜牧业养殖规模化率、减少反刍动物肠道发酵甲烷排放、合理利用畜禽粪便以及植树造林增加碳汇吸收等方法可有效减少畜牧业温室气体排放.  相似文献   

5.
山东省农业源氨排放清单研究   总被引:2,自引:0,他引:2  
为建立山东省农业源氨排放清单,根据《山东统计年鉴2016》数据,采用排放因子法估算了山东省2015年农业源氨排放清单。结果表明,山东省2015年农业源氨排放量为105.831万t,排放强度为6.71 t·km-2。畜禽养殖是最大的排放源,排放量为68.673万t,占总排放量的64.89%,猪和家禽是畜禽养殖排放量的最大贡献源,两者占畜禽养殖排放量的72.88%;其次是氮肥施用,排放量为30.835万t,占总排放量的29.14%;生物质燃烧、人体排放、土壤本底的氨排放量分别为2.173、2.117、1.943万t,分别占总排放量的2.05%、2.00%、1.84%;固氮植物的氨排放量最小,仅为0.09万t,不足总排放量的1%。菏泽、德州、潍坊、临沂、济宁、聊城是山东省农业源氨排放大市,氨排放量为7.910~13.662万t。研究表明,应从规范畜禽养殖规模和合理施肥两方面着手,精准施策,以减少山东省农业源氨排放量。  相似文献   

6.
依据省级温室气体清单编制指南给出的动物肠道发酵及粪便处理甲烷核算方法,结合宁夏统计年鉴和《中国畜牧业统计年鉴》,估算宁夏畜牧业2005年、2010年、2012年、2014年甲烷排放量,并开展畜牧业排放源结构、分动物种类甲烷排放结构、饲养模式变化趋势及不确定性分析.结果表明:宁夏动物肠道发酵排放占比95%,动物粪便处理排放5%;各种动物甲烷排放量大小依次为肉牛、绵羊、奶牛、山羊、生猪;随着养殖水平的提高,规模化饲养产生的甲烷排放逐渐超过农户饲养产生的排放.针对目前宁夏畜牧业甲烷排放现状,提出控制动物肠道发酵及动物粪便处理甲烷排放的可行性措施.  相似文献   

7.
重庆市农业温室气体减排潜力分析   总被引:1,自引:0,他引:1  
农业是重要的温室气体排放源。通过对文献资料和大量研究结果进行分析,得出重庆市农业活动产生的温室气体减排空间巨大。通过推广稻田间歇灌溉可减少稻田甲烷排放15.07万t,约为当前排放量的30%;一个户用沼气每年最大可减少温室气体2.0~4.1t二氧化碳当量;推行缓释肥、长效肥料可减少单位面积农田氧化亚氮1 744.65 t,约为当前排放量的50%。  相似文献   

8.
江苏省畜禽养殖温室气体排放估算   总被引:3,自引:0,他引:3  
根据畜禽养殖的活动数据和温室气体排放因子,采用IPCC指南(2006)推荐的排放系数法,估算江苏省2000~2009年畜禽温室气体排放量。结果显示:江苏省畜禽养殖甲烷年平均排放总量为174.63 Gg,氧化亚氮年平均排放总量为20.80 Gg。其中,畜禽肠道发酵是重要甲烷排放源,年平均排放量为106.63 Gg,占畜禽甲烷排放总量的61.06%;粪便管理甲烷排放是畜禽温室气体的另一重要来源,年平均排放量为68 Gg,占甲烷排放总量的38.94%;2000~2009年期间江苏省畜禽温室气体排放量总体呈下降的趋势,肠道发酵羊的甲烷排放量最大,粪便管理中温室气体排放生猪排放贡献最大,前者主要是由排放系数决定,后者取决于饲养量。  相似文献   

9.
本文通过估算1985年–2005年期间福建省畜禽养殖业粪便排放量变化,并通过耕地负荷、流失量等参数评价了福建省畜禽养殖业废弃物污染风险。评估结果表明:1985年福建省的畜禽粪便产生量为2180万吨,而到了2005年达到了4249万吨,翻了一番。1985年时福建省畜禽粪便耕地负荷、纯氮耕地负荷和纯磷耕地负荷分别为15.2 t?hm-2、96 kg?hm-2和45 kg?hm-2;而到了2005年已分别达到了29.6 t?hm-2、181 kg?hm-2和96 kg?hm-2。同时,福建省畜禽粪便中氮、磷、钾流失量分别从1985年的3.26万t、0.70万t和4.47万t增长到6.05万t、1.85万t和10.53万t。2005年福建省畜禽养殖业的氮排放量分别是同期工业废水和生活污水氮排放量的7.4倍和1.9倍,已成为福建省流域水体富营养化的主要原因,其贡献已大大超过工业废水和生活污水。  相似文献   

10.
【目的】评估福建省规模化养猪场利用沼气工程处理粪便产生的温室气体减排效益,以推动规模化养猪场沼气工程建设,实现生猪养殖业清洁生产。【方法】根据国际通用的温室气体减排量计算方法,以2010年和2015年为例,计算福建省规模化养猪场粪便资源量及沼气生产潜力,评估粪便资源全部用于沼气工程建设所带来的减排效益。【结果】2010年和2015年福建省规模化养猪场排泄物干物质总量分别为169.93万t和163.29万t,其产沼气潜力分别为7.14亿m~3和6.86亿m~3。假设规模化养猪场粪便所产沼气全部用于替代薪柴,则分别可替代薪柴245.42万t和235.84万t,减少CO_2排放量分别为268.74万t和258.25万t;假设规模化养猪场粪便所产沼气全部用于替代煤炭,则分别可替代煤炭130.85万t和125.74万t,减少CO_2排放量110.89万t和106.56万t。如果养猪场粪便全部用于沼气工程,则分别可减少CH_4排放3.59万t和3.45万t。【结论】沼气工程在有效处理禽畜粪便的同时生产了优质燃料,沼气替代传统能源减少了CO_2排放,禽畜粪便厌氧消化减少了CH_4排放,带来了显著的社会经济及环境效益。  相似文献   

11.
东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究   总被引:4,自引:2,他引:2  
为了评估季节性冻融交替对土壤温室气体排放的影响,采用静态暗箱-气相色谱法,监测了东北松嫩平原两种典型农田生态系统(稻田和玉米田)非生长季土壤CO_2、CH_4和N_2O通量变化。研究表明:三种温室气体排放在土壤冻结期、覆雪期、融雪期和解冻期具有明显的季节动态特征。冻结期和融雪期对温室气体排放贡献最大,这两个时期内稻田和玉米田CO_2排放量分别占非生长季总累积排放量的74.9%和68.6%,稻田CH_4排放占非生长季总排放的95.7%,尽管玉米田土壤CH_4以吸收为主,但在融雪过程中存在明显释放峰,短暂的融雪期内N_2O呈集中爆发性释放,稻田和玉米田N_2O通量峰值分别是冻结前的40倍和99倍,排放量占到总累积排放量的73.9%和80.7%,覆雪期土壤CH_4和N_2O存在弱的吸收。另外,土壤温室气体排放存在土地利用方式间的差异,表现在稻田土壤比玉米田(非生长季)具有更高的温室气体排放潜力。稻田土壤CO_2、CH_4和N_2O累积排放量均高于玉米田,表现为净排放(源),而玉米田土壤CH_4通量表现为净吸收(汇);稻田土壤CO_2和CH_4平均排放速率显著高于玉米田;除覆雪期外,其他时期内三种温室气体平均通量在两类农田之间也存在显著差异。总之,在评价季节性冻土区温室气体排放时需要重视土壤冻结和融化过程,同时需要考虑不同土地利用方式间的差异。  相似文献   

12.
稻田管理措施对土壤碳排放的影响   总被引:3,自引:1,他引:2  
稻田土壤是最重要碳库之一,农田管理措施影响着稻田土壤碳排放.本文综合论述了本课题组过去几年的研究成果,并结合国内外其它相关研究,分析和讨论稻田养鸭,灌溉方式、氮肥施用和耕作措施对土壤碳排放的影响.研究指出,稻田养鸭有效降低稻田温室效应,间歇灌溉降低CH4排放,施氮肥不影响土壤碳排放,而免耕有效降低土壤碳排放.由于土壤碳...  相似文献   

13.
[目的]研究耕作对早稻田甲烷排放的影响,并分析影响稻田甲烷排放的环境因子,寻找合适的耕作模式以减少稻田甲烷排放.[方法]设免耕不施肥、免耕施肥、常规不施肥和常规施肥4个处理,分别在水稻分蘖期和水稻抽穗期采用静态箱法收集气态甲烷(CH4),同步观测地温、采气箱内温度、环境温度、地表温度、草面温度、相对湿度及风速,探究早稻田CH4排放的日排放规律,明确免耕和施肥及环境因素对稻田CH4排放的影响.[结果]早稻田CH4的排放与气温、地表温度、5 cm土温、草面温度、相对湿度、风速等密切相关,尤其在分蘖期,各处理均与上述环境因子显著相关(P<0.05).不同耕作与施肥模式下,CH4日平均通量不同,在水稻分蘖期具体表现为常规施肥>常规不施肥>免耕施肥>免耕不施肥,在水稻抽穗期表现为常规不施肥>免耕施肥>常规施肥>免耕不施肥.[结论]免耕与常规耕作相比,早稻田CH4的排放量相对降低;施肥导致分蘖期早稻田CH4排放通量增加,但在抽穗期导致早稻田CH4排放减少.免耕可以减轻早稻田CH4的排放,其推广能为稻田减排做贡献.  相似文献   

14.
有机肥施用对稻田甲烷排放的影响及模拟研究   总被引:2,自引:0,他引:2  
通过2年的田间定位试验,监测了湖南稻田施用不同有机肥(稻草、鸡粪和猪粪)处理对CH4排放的影响,并利用Logistic模型模拟了CH4累积排放动态。结果表明:施用有机肥显著增加CH4排放量,其中稻草处理CH4排放量最高,2年稻季平均排放总量为796.96 kg·hm-2,比鸡粪处理(405.56 kg·hm-2)增加96.51%(P<0.05),两者比猪粪处理分别增加214.1%(P<0.05)和59.8%(P<0.05),比单施化肥处理分别增加249.8%(P<0.05)和78.0%(P<0.05),而  相似文献   

15.
调整畜牧业生产结构是有计划发展我国畜牧业的措施,其主要内容包括:役畜向产畜转化;发展草食与饲料转化率高的节粮家畜;良种化;改进畜群结构;扩大家畜种类;调整畜产品结构。  相似文献   

16.
稻麦两熟制农田不同土壤耕作方式对稻季CH_4排放的影响   总被引:1,自引:1,他引:0  
【目的】研究稻麦两熟制农田不同土壤耕作方式对水稻生长季CH4排放的影响,为长江下游稻麦两熟制农田温室气体减排提供对策。【方法】采用裂区设计,利用静态暗箱-气相色谱法研究麦季土壤耕作方式(免耕、旋耕和翻耕)和稻季土壤耕作方式(旋耕和翻耕)对水稻生长季CH4排放的影响。【结果】稻麦两熟制农田不同土壤耕作方式下水稻生长季CH4排放呈先升高后降低的变化趋势,移栽至有效分蘖临界叶龄期CH4累积排放量占全生育期排放总量的比例为64.73%—86.84%。水稻生长季CH4排放总量麦季免耕极显著高于麦季旋耕和麦季翻耕,平均增加53%和24%;稻季翻耕较稻季旋耕平均增加CH4排放量10%,差异达显著水平。不同土壤耕作处理稻季CH4排放总量为:麦季免耕+稻季翻耕麦季免耕+稻季旋耕麦季翻耕+稻季翻耕麦季翻耕+稻季旋耕麦季旋耕+稻季翻耕麦季旋耕+稻季旋耕,"单位产量的CH4排放量"表现趋势相同。水稻生长期内CH4排放通量的季节变化和土壤Eh呈极显著负相关,CH4排放总量与0—5cm耕层土壤有机质含量呈极显著正相关。【结论】麦季土壤耕作方式和稻季土壤耕作方式对水稻生长季CH4排放总量有显著或极显著影响,在长江下游稻麦两熟制农田采用周年旋耕措施能有效减少水稻生长季CH4的排放。  相似文献   

17.
农业碳减排作为应对气候变化研究的重要内容,一直是相关研究领域的热点?借鉴IPCC和其他研究机构、学者提供的碳排放因子系数,从农业物资投入、农地活动、水稻种植、牲畜养殖等12种主要碳源,测算了江西省2001-2020年农业碳排放量,并利用LMDI分解法将农业碳排放驱动因素分解为效率因素、结构因素、经济发因素、劳动力因素。结果表明:江西省农业碳排放总量从2001-2020年呈波动下降-上升-下降-持续上升-持续下降的变化趋势,并在2016年达到顶峰。相比于2001年,农业碳排放量增长20.68%,农业碳排放强度下降47.75%;效率因素与劳动力因素对农业碳排放有抑制作用,分别减少351.02%、426.26%的碳排放量。结构因素与经济因素对农业碳排放有促进作用,分别增加33.55%、843.92%的碳排放量。文章最后就农业碳减排措施提出了针对性建议。  相似文献   

18.
江苏省农业碳排放时序特征与趋势预测   总被引:2,自引:1,他引:1  
为探讨江苏省农业碳排放时序特征及未来碳排放趋势,利用排放因子法对江苏省2000—2019年农业碳排放进行估算,并运用STIRPAT模型对2020—2030年全省农业碳排放趋势进行预测。结果表明:江苏省2000—2019年的CO2排放当量(CO2e)整体呈现降低-升高-降低的趋势,并在2005年达峰,估算为8 361.77万t,其中种植业、畜牧业则分别在2010年、2003年达峰,种植业排放量远高于畜牧业。农业CO2e排放强度呈先升高后降低的趋势,2003年后排放强度逐年递减,到2019年已降至1.31 t·万元-1;在各碳源中,水稻种植是全省农业碳排放的最大排放源,而在主要畜禽中,猪养殖过程中造成的碳排放远高于其他畜禽;预计2020—2030年,伴随城镇化发展、农业人均GDP提高和农业碳排放强度的进一步降低,全省农业CO2e排放量仍将呈下降趋势,在减碳的同时可以兼顾农业经济高效发展。研究表明,江苏省农业已实现碳达峰,未来农业碳排放的持续降低将有利于加速全省碳中和目标的实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号