首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
植物保护   3篇
  2021年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 75 毫秒
1
1.
Several Phytophthora spp. are known to cause a range of symptoms on citrus, resulting in significant crop losses worldwide. In South Africa, Phytophthora remains a destructive citrus disease, but the species and their distribution have not been well documented. A total of 162 Phytophthora isolates was collected from 60 citrus orchards in seven provinces of South Africa (Eastern Cape, Kwazulu-Natal, Limpopo, Mpumalanga, Northern Cape, North West and Western Cape). Isolates were identified to the species level through PCR-RFLP (restriction fragment length polymorphism) analyses of the internal transcribed spacer region. The identity of a subset of the isolates was confirmed using morphological and sequence analyses. Phytophthora nicotianae was the predominant species (76 % of isolates) and occurred in 80 % of the orchards in all of the provinces, followed by P. citrophthora (22 % of isolates in 28 % of orchards). The P. citrophthora isolates were further subdivided into two previously identified subgroups, G1 and G2, with most (69 %) of the isolates belonging to the G1 subgroup. Other Phytophthora species included P. multivora in the Western Cape Province, and an unknown species in the Eastern Cape Province with high sequence similarity (98 %) to a putative new species submitted to GenBank as Phytophthora taxon Sisuluriver. Phytophthora palmivora, a known citrus pathogen, was not identified. Most of the P. nicotianae isolates (79 %) were of the A1 mating type. The P. citrophthora isolates were mostly sterile (64 %), including most of the G1 isolates (81 %). The remaining G1 isolates (19 %) belonged to the A1 mating type, whereas almost all G2 isolates belonged to the A2 mating type except for one isolate that was sterile.  相似文献   
2.
European Journal of Plant Pathology - The formal honeybush tea industry in South Africa is relatively new, and has tremendous growth potential. However, as with other cultivated crops, production...  相似文献   
3.
Limited knowledge is available on Phytophthora infestans populations in Sub‐Saharan Africa (SSA). Therefore, and in response to recent severe late blight epidemics, P. infestans isolates from potato, tomato and Petunia × hybrida from eight SSA countries were characterized. Isolates were characterized with ‘old’ markers, including mating type (176 isolates), mitochondrial DNA haplotype (mtDNA) (281 isolates), glucose‐6‐phosphate isomerase (Gpi) (70 isolates), restriction fragment length polymorphism analysis with probe RG‐57 (49 isolates), and by metalaxyl sensitivity (64 isolates). Most isolates belonged to the US‐1 genotype or its variants (US‐1.10 and US‐1.11). The exceptions were genotype KE‐1 isolates (A1 mating type, mtDNA haplotype Ia, Gpi 90/100 and unique RG‐57 genotype), identified in two fields in Kenya, which are related to genotypes previously identified in Rwanda (RW‐1 and RW‐2), Ecuador and Europe. Metalaxyl‐resistant P. infestans isolates from potato were present in all the countries except Malawi, whereas all the isolates from tomato were sensitive. Genotyping of 176 isolates with seven simple sequence repeat (SSR) markers, including locus D13 that was difficult to score, revealed 79 multilocus genotypes (MLGs) in SSA. When this locus was excluded, 35 MLGs were identified. Genetic differentiation estimates between regional populations from SAA were significant when locus D13 was either excluded (P = 0·05) or included (P = 0·007), but population differentiation was only low to moderate (FST = 0·044 and 0·053, respectively).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号