首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
畜牧兽医   3篇
园艺   1篇
植物保护   2篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The pea root rot complex is a major concern for green pea production worldwide. This study aimed at characterizing its composition and dynamics throughout a cropping season in northern France. To this end, fungi and oomycetes were isolated from green pea plant roots with symptoms sampled at the flowering stage in 22 fields in 2017, and at the pea emergence, elongation and flowering stages in two fields in 2018. Out of 646 isolates collected, 317 were identified using molecular markers. Fusarium oxysporum, F. solani and F. redolens were highly predominant. Pathogenicity tests separated the isolates into four aggressiveness groups. F. solani isolates were the most aggressive. Phylogenetic analysis of their TEF1 sequences showed that they mainly belonged to the F. pisi lineage, and that F. oxysporum isolates were genetically close to isolates from the UK that did not belong to the forma specialis pisi. In addition, several Clonostachys rhizophaga isolates are reported for the first time to cause pea root rot. The oomycetes were rarely found and were represented by a few Pythium spp. isolates. Lastly, this study shows that the fungal and oomycete communities associated with pea root rot change during the cropping season. The level of dissimilarity of the root-rot-associated communities decreased throughout the cropping season towards a more similar composition at the flowering stage, dominated by F. solani, F. oxysporum and F. redolens. The proportion of nonpathogenic to weakly pathogenic isolates decreased progressively during the growing season in favour of moderately to highly pathogenic isolates.  相似文献   
2.
European Journal of Plant Pathology - Fusarium verticillioides is a soil-borne plant pathogen of maize plants (Zea mays L.) responsible for major yield losses by causing root, stalk, and ear rot...  相似文献   
3.
In this study, canine monocyte-derived dendritic cells (cMo-DC) were produced in presence of canine GM-CSF (cGM-CSF) and canine IL-4 (cIL-4), and they were characterized by their dendritic morphology, MLR functionality and phenotype. We noticed that cMo-DC were labelled with three anti-human CD86 (FUN-1, BU63 and IT2.2 clones), whereas resting and activated lymphocytes or monocytes were not stained. CD86 expression was induced by cIL-4 and was up-regulated during the differentiation of the cMo-DC, with a maximum at day 7. Furthermore, cMo-DC were very potent even in low numbers as stimulator cells in allogeneic MLR, and BU63 mAb was able to completely block the cMo-DC-induced proliferation in MLR. We also observed that cMo-DC highly expressed MHC Class II and CD32, but we failed to determine their maturation state since the lack of commercially available canine markers. Moreover, cMo-DC contained cytoplasmic periodic microstructures, potentially new ultrastructural markers of canine DC recently described. In conclusion, this work demonstrates that the CD86 costimulatory marker is now usable for a better characterization of in vitro canine DC.  相似文献   
4.
Toll-like receptors (TLRs) are a family of functionally important receptors for recognition of pathogen-associated molecular pattern (PAMP) since they trigger the pro-inflammatory response and upregulation of costimulatory molecules, linking the rapid innate response to adaptative immunity. In human leukocytes, TLR3 has been found to be specifically expressed in dendritic cells (DC). This study examined the expression of TLR3 in canine monocytes-derived DC (cMo-DC) and PBMC using three new anti-TLR3 mAbs (619F7, 722E2 and 713E4 clones). The non-adherent cMo-DC generated after culture in canine IL-4 plus canine GM-CSF were labelled with the three anti-TLR3 clones by flow cytometry, with a strong expression shown for 619F7 and 722E2 clones. By contrast, TLR3 expression was low to moderate in canine monocytes and lymphocytes. These results were confirmed by Western blot using 619F7 and 722E2 clones and several polypeptide bands were observed, suggesting a possible cleavage of TLR3 molecule or different glycosylation states. In addition, TLR3 was detectable in immunocytochemistry by using 722E2 clone. In conclusion, this first approach to study canine TLR3 protein expression shows that three anti-TLR3 clones detect canine TLR3 and can be used to better characterize canine DC and the immune system of dogs.  相似文献   
5.

Background

In order to maintain high yields while saving water and preserving non-renewable resources and thus limiting the use of chemical fertilizer, it is crucial to select plants with more efficient root systems. This could be achieved through an optimization of both root architecture and root uptake ability and/or through the improvement of positive plant interactions with microorganisms in the rhizosphere. The development of devices suitable for high-throughput phenotyping of root structures remains a major bottleneck.

Results

Rhizotrons suitable for plant growth in controlled conditions and non-invasive image acquisition of plant shoot and root systems (RhizoTubes) are described. These RhizoTubes allow growing one to six plants simultaneously, having a maximum height of 1.1 m, up to 8 weeks, depending on plant species. Both shoot and root compartment can be imaged automatically and non-destructively throughout the experiment thanks to an imaging cabin (RhizoCab). RhizoCab contains robots and imaging equipment for obtaining high-resolution pictures of plant roots. Using this versatile experimental setup, we illustrate how some morphometric root traits can be determined for various species including model (Medicago truncatula), crops (Pisum sativum, Brassica napus, Vitis vinifera, Triticum aestivum) and weed (Vulpia myuros) species grown under non-limiting conditions or submitted to various abiotic and biotic constraints. The measurement of the root phenotypic traits using this system was compared to that obtained using “classic” growth conditions in pots.

Conclusions

This integrated system, to include 1200 Rhizotubes, will allow high-throughput phenotyping of plant shoots and roots under various abiotic and biotic environmental conditions. Our system allows an easy visualization or extraction of roots and measurement of root traits for high-throughput or kinetic analyses. The utility of this system for studying root system architecture will greatly facilitate the identification of genetic and environmental determinants of key root traits involved in crop responses to stresses, including interactions with soil microorganisms.
  相似文献   
6.
An elutriation technique was developed to obtain large quantities of pure canine monocytes. Firstly, peripheral blood mononuclear cells (PBMC) were isolated from whole blood by Ficoll gradient. Then, the PBMC were separated by an elutriation procedure. We demonstrated that these techniques allow the isolation of canine peripheral blood monocytes with a purity of 64% +/- 7.9 when labelled with anti-CD14 antibody. This purity increased to 83% +/- 2.2 after separation by magnetic anti-CD14 microbeads. The cell viability was more than 95% and apoptotic cells were less than 10%. The monocytes purified by these methods were functionally active in a mixed leukocyte reaction (MLR). A lymphocyte fraction was obtained directly only by elutriation with an average of 79.9% +/- 10.7 of CD5+, 7.9% +/- 3.5 of CD21+ and 1.78% +/- 2.53 of CD14+. Our results indicate that this elutriation procedure is a safe method to purify monocytes as well as lymphocytes, useful in MLR.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号