首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  1篇
综合类   4篇
园艺   1篇
  2011年   1篇
  2008年   3篇
  2004年   1篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Expanding human population and economic growth have led to large-scale conversion of natural habitat to human-dominated landscapes with consequent large-scale declines in biodiversity. Conserving biodiversity, while at the same time meeting expanding human needs, is an issue of utmost importance. In this paper we develop a spatially explicit landscape-level model for analyzing the biological and economic consequences of alternative land-use patterns. The spatially explicit biological model incorporates habitat preferences, area requirements and dispersal ability between habitat patches for terrestrial vertebrate species to predict the likely number of species that will be sustained on the landscape. The spatially explicit economic model incorporates site characteristics and location to predict economic returns for a variety of potential land uses. We apply the model to search for efficient land-use patterns that maximize biodiversity conservation objectives for given levels of economic returns, and vice versa. We apply the model to the Willamette Basin, Oregon, USA. By thinking carefully about the arrangement of activities, we find land-use patterns that sustain high levels of biodiversity and economic returns. Compared to the 1990 land-use pattern, we show that both biodiversity conservation and the value of economic activity could be increased substantially.  相似文献   
3.
Species distributions, land values, and efficient conservation   总被引:1,自引:0,他引:1  
A Ando  J Camm  S Polasky  A Solow 《Science (New York, N.Y.)》1998,279(5359):2126-2128
Efforts at species conservation in the United States have tended to be opportunistic and uncoordinated. Recently, however, ecologists and economists have begun to develop more systematic approaches. Here, the problem of efficiently allocating scarce conservation resources in the selection of sites for biological reserves is addressed. With the use of county-level data on land prices and the incidence of endangered species, it is shown that accounting for heterogeneity in land prices results in a substantial increase in efficiency in terms of either the cost of achieving a fixed coverage of species or the coverage attained from a fixed budget.  相似文献   
4.
Santelmann  M.V.  White  D.  Freemark  K.  Nassauer  J.I.  Eilers  J.M.  Vaché  K.B.  Danielson  B.J.  Corry  R.C.  Clark  M.E.  Polasky  S.  Cruse  R.M.  Sifneos  J.  Rustigian  H.  Coiner  C.  Wu  J.  Debinski  D. 《Landscape Ecology》2004,19(4):357-374
The contributions of current agricultural practices to environmental degradation and the social problems facing agricultural regions are well known. However, landscape-scale alternatives to current trends have not been fully explored nor their potential impacts quantified. To address this research need, our interdisciplinary team designed three alternative future scenarios for two watersheds in Iowa, USA, and used spatially-explicit models to evaluate the potential consequences of changes in farmland management. This paper summarizes and integrates the results of this interdisciplinary research project into an assessment of the designed alternatives intended to improve our understanding of landscape ecology in agricultural ecosystems and to inform agricultural policy. Scenario futures were digitized into a Geographic Information System (GIS), visualized with maps and simulated images, and evaluated for multiple endpoints to assess impacts of land use change on water quality, social and economic goals, and native flora and fauna. The Biodiversity scenario, targeting restoration of indigenous biodiversity, ranked higher than the current landscape for all endpoints (biodiversity, water quality, farmer preference, and profitability). The Biodiversity scenario ranked higher than the Production scenario (which focused on profitable agricultural production) in all endpoints but profitability, for which the two scenarios scored similarly, and also ranked higher than the Water Quality scenario in all endpoints except water quality. The Water Quality scenario, which targeted improvement in water quality, ranked highest of all landscapes in potential water quality and higher than the current landscape and the Production scenario in all but profitability. Our results indicate that innovative agricultural practices targeting environmental improvements may be acceptable to farmers and could substantially reduce the environmental impacts of agriculture in this region.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   
5.
A common assumption is that ecosystem services respond linearly to changes in habitat size. This assumption leads frequently to an "all or none" choice of either preserving coastal habitats or converting them to human use. However, our survey of wave attenuation data from field studies of mangroves, salt marshes, seagrass beds, nearshore coral reefs, and sand dunes reveals that these relationships are rarely linear. By incorporating nonlinear wave attenuation in estimating coastal protection values of mangroves in Thailand, we show that the optimal land use option may instead be the integration of development and conservation consistent with ecosystem-based management goals. This result suggests that reconciling competing demands on coastal habitats should not always result in stark preservation-versus-conversion choices.  相似文献   
6.
Land clearing and the biofuel carbon debt   总被引:8,自引:0,他引:8  
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号