首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
园艺   3篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 8 毫秒
1
1.
Nest predation is an important cause of mortality for many bird species, especially in grassland ecosystems where generalist predators have responded positively to human disturbance and landscape fragmentation. Our study evaluated the influence of the composition and configuration of the surrounding landscape on nest predation. Transects consisting of 10 artificial ground nests each were set up in 136 roadsides in six watersheds in south-central Iowa. Nest predation on individual roadside transects ranged from 0 to 100% and averaged 23%. The relationship of landscape structure within spatially-nested landscapes surrounding each roadside transect (within 200, 400, 800, 1200, and 1600 m of the transect line) to nest predation was evaluated by using multiple regression and canonical correlation analyses. The results of this multiscale landscape analysis demonstrated that predation on ground nests was affected by the surrounding landscape mosaic and that nest predators with different-sized home ranges and habitat affinities responded to landscapes in different ways. In general, wooded habitats were associated with greater nest predation, whereas herbaceous habitats (except alfalfa/pasture) either were associated with less nest predation or were not important. Different landscape variables were important at different spatial scales. Whereas some block-cover habitats such as woodland were important at all scales, others such as rowcrops and alfalfa/pasture were important at large scales. Some strip-cover habitats such as gravel roads and paved roads were important at small scales, but others such as wooded roadsides were important at all all scales. Most landscape metrics (e.g., mean patch size and edge density) were important at large scales. Our study demonstrated that the relationships between landscape structure and predator assemblages are complex, thus making efforts to enhance avian productivity in agricultural landscapes a difficult management goal.  相似文献   
2.
Santelmann  M.V.  White  D.  Freemark  K.  Nassauer  J.I.  Eilers  J.M.  Vaché  K.B.  Danielson  B.J.  Corry  R.C.  Clark  M.E.  Polasky  S.  Cruse  R.M.  Sifneos  J.  Rustigian  H.  Coiner  C.  Wu  J.  Debinski  D. 《Landscape Ecology》2004,19(4):357-374
The contributions of current agricultural practices to environmental degradation and the social problems facing agricultural regions are well known. However, landscape-scale alternatives to current trends have not been fully explored nor their potential impacts quantified. To address this research need, our interdisciplinary team designed three alternative future scenarios for two watersheds in Iowa, USA, and used spatially-explicit models to evaluate the potential consequences of changes in farmland management. This paper summarizes and integrates the results of this interdisciplinary research project into an assessment of the designed alternatives intended to improve our understanding of landscape ecology in agricultural ecosystems and to inform agricultural policy. Scenario futures were digitized into a Geographic Information System (GIS), visualized with maps and simulated images, and evaluated for multiple endpoints to assess impacts of land use change on water quality, social and economic goals, and native flora and fauna. The Biodiversity scenario, targeting restoration of indigenous biodiversity, ranked higher than the current landscape for all endpoints (biodiversity, water quality, farmer preference, and profitability). The Biodiversity scenario ranked higher than the Production scenario (which focused on profitable agricultural production) in all endpoints but profitability, for which the two scenarios scored similarly, and also ranked higher than the Water Quality scenario in all endpoints except water quality. The Water Quality scenario, which targeted improvement in water quality, ranked highest of all landscapes in potential water quality and higher than the current landscape and the Production scenario in all but profitability. Our results indicate that innovative agricultural practices targeting environmental improvements may be acceptable to farmers and could substantially reduce the environmental impacts of agriculture in this region.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   
3.
Matrix quality affects probability of persistence in habitat patches in landscape simulation models while empirical studies show that both urban and agricultural land uses affect forest birds. However, due to the fact that forest bird abundance and species richness can be strongly influenced by local habitat factors, it is difficult to analyze matrix effects without confounding effects from such factors. Given this, our objectives were to (1) relate human-dominated land uses to forest bird abundance and species richness without confounding effects from other factors; (2) determine the scale at which forest birds respond to the matrix; and (3) identify whether certain bird migratory strategies or habitat associations vary in richness or abundance as a function of urban and agriculture land uses. Birds were surveyed at a single point count site 100 m from the edge of 23 deciduous forest patches near Ottawa, Ontario. Land uses surrounding each patch were measured within increasingly large circles from 200 to 5000 m radius around the bird survey site. Regression results suggest that effects of urban and agricultural land uses on forest birds (1) are not uniformly positive or negative, (2) can occur at different spatial scales, and (3) differentially affect certain groups of species. In general, agriculture appeared to affect species at a broad spatial scale (within 5 km), while urban land use had an impact at both a narrower spatial scale (within 1.8 km) and at the broad scale. Neotropical and short distance migrant birds seemed to be the most sensitive to land use intensification within the matrix. Limiting urban land use within approximately 200–1800 m of forest patches would be beneficial for Neotropical migrant birds, which are species of growing conservation concern in temperate North America.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号